DEVELOPMENT OF A LIGHT COMMUNICATION LINK

Project Report Submitted by

TOFINI ELENI

In part satisfaction of the award of DIPLOMA OF TECHNICIAN ENGINEER in Electrical Engineering of the Higher Technical Institute, Cyprus

Project Supervisor: Mr. D. Lambrianides Lecturer in Electrical Engineering, H.T.I.

External Assessor: Mr. Christos Limnatitis

Type of project: Individual Group

June 1994

PROJECT NO HIGHER 99

DEVELOPMENT OF A LIGHT COMMUNICATION LINK

Prepared by Eleni Tofini, 3E1, 1994

Summary

In this project titled " Development of a light communication link " the various links are studied and the development of a fiber optic communication link is carried out.

The unit constructed can be considered as an experimental one, primarily designed for demostration purposes. It is made up of two main parts: the transmitter and the receiver unit. These can be connected with mainly two ways between them which are light propagation directly through free space or through a fiber optic. Demostration procedures are also provided.

The procedure for the development of both parts, includes three basic stages:

1.Design

2. Construction and

3. Testing

Design includes the study of several approaches to the solution of the problem, taking into account several factors, such as availagility of components, feasibility of construction and of course, it's economical aspect.

Construction is to bring design into practise. In other words is the construction of the PCB's and the mounting of the various components to form it's circuity.

Testing has been performed using various instruments like signal generators, oscilloscopes etc, to test and calibrate in order to have good responce of the system.

A chapter deals with the different types of instruments used in fiber optics such as testers, instruments that measure fiber loss etc.

Finally, theory of the various types of fiber optics and optoelectronic devices is given as reference for the user.

.

LIST OF C O N T E N T S

AKNOWLEDGMENTS SUMMARY INTRODUCTION	PAGE I II III
CHAPTER 1: TYPES OF LIGHT COMMUNICATION LINK	
1.1 Ordinary Light Link	1
1.1.1 Drawbacks of direct transmission of light	1
1.1.2 Direct transmission applications	2
1.2 Fiber Optic Light Communication Link	3
1.2.1 Through fiber optic applications	3
1.2.2 Fiber Optic against ordinary cable	3
1.3 Light Spectrum	6
CHAPTER 2: CIRCUIT DESCRIPTION	
2.1 Block Diagrams	7
2.2 Circuit Operation	8
2.2.1 Transmitter	8
2.2.2 Receiver	10
2.3 Testing	14
2.3.1 Frequency Response	15
2.3.2 Attenuation measurement	23
2.4 Development of the circuit	24
2.5 Constructional details	26
2.5.1 Introduction	26
2.5.2 The photographic method for produsing pcb's	26
2 5 3 The instrument construction	27

CHAPTER 3: EXPERIMENTS ON THE UNIT

3.1 Exp. 1: Fiber Optics purposes of use	33
3.2 Exp. 2: Frequency Response of the system	35
3.3 Exp. 3: Measurement of attenuation of fiber optics	38

CHAPTER 4: FIBER OPTIC INSTRUMENTS

4.1 Optical Time Domain Reflectometer	40
4.1.1 OTDR display	42
4.2 Optical Fiber Tester	44
4.2.1 Features	44
4.2.2 Description	44
4.2.3 Applications	45
4.3 Outline Of Light Sources	47
4.3.1 Block diagram	47
4.3.2 Applications	48
4.4 Optical Handy Power Meter	49
4.4.1 Features	49
4.4.2 Description	50

CHAPTER 5: A. FIBER OPTICS

5.8.1 L.E.D 's

5.8.2 Laser Diode

5.9 Light Receiving Devices

5.9.1 P.I.N diodes

5.1 Optical Fiber Configurations	52
5.2 Propagation mode in the fiber	55
5.2.1 Multimode Step-Index Fiber	55
5.2.2 Multimode Graded-Index Fiber	57
5.2.3 Singlemode Step-Index Fiber	58
5.3 Comparison of the three types of optical fibers	60
5.4 Spectral Attenuation	61
5.5 Influenced Areas	62
5.6 Typical Fiber Attenuation	63
5.7 Fiber Optical Bandwidth	63

B. OPTOELECTRONIC DEVICES 5.8 Light Emitting Devices

66
66
69
72
72

5.9.2 A.P.D 's	74
5.9.3 Comparison between PIN & APD	74

CONCLUSIONS

REFERENCES

APPENDICES:

- 1. Components Cost
- 2. Data Sheets
- 3. Product Spesifications

76