DESIGN OF CONCRETE OF GRADE 40 USING ADMIXTURES

Project report submitted by: YIANNA CHARALAMBOUS ANDRY PROCOPOUDI

in part satisfaction of the award of Diploma of TECHNICIAN ENGINEER IN CIVIL ENGINEERING of the HIGHER TECHNICAL INSTITUTE, CYPRUS.

Project Supervisor:

D. Andreou Senior Lecturer in Civil Engineering, H.T.I.

External Assessor: G. Ioannou Type of Project : GROUP

JUNE, 1993

DESIGN OF CONCRETE OF GRADE 40 USING ADMIXTURES SUMMARY

This work is divided into two parts. The first part is the LITERATURE SURVEY which covers the general properties of cement, aggregates and concrete mixing, and points to be considered in order to produce a workable, durable, impermeable concrete to achieve its maximum strength. Also a refer is made to the admixture used.

The second part of this work involves an experimental study on the compressive strength of concrete cubes, which they were design using admixtures.

An experimental work was carried out to investigate the parameters which influence the design of concrete and trial mixes were produced until the final mix was the expected one.

CONTENTS

ACKNOWLEDGEMENTS	I
SUMMARY	II
CONTENTS	III
LIST OF TABLES	IV
LIST OF FIGURES	V

CHAPTER 1

INTRODUCTION	
1.1. General	1

CHAPTER 2

LITERATURE SURVEY	
2.1. Cement	4
2.1.1 Composition of Portland cement	4
2.1.2 Fineness of grinding	6
2.1.3 Types of Portland cement	6
2.1.4 The increase of strength with age	10
2.1.5 Effect of temperative	10
2.1.6 Meat of hydration	10
2.1.7 Properties of concrete as related	
to cement content	11
2.2 Water	13
2.3 Aggregates	13
2.3.1 Absorption and surface moisture	14
2.3.2 Particle shape and surface texture	16
2.3.3 Sieve analysis (grading)	16
2.4 Admixtures	17
2.4.1 Introduction	17
2.4.2 Accelerators	18
2.4.3 Retarders	19
2.4.4 Pore Fillers and pozzolanas	19
2.4.5 Water - repellent admixtures	19
2.4.6 Workability aids	19
2.5 Water/cement ratio, workability	20
and segregation	

2.5.1 Water/cement ratio	20
2.5.2 Workability	21
2.5.3 Segretation	25
2.6 Compaction	25
2.6.1 Compaction of concrete	25
2.6.2 Hand Compaction	25
2.6.3 Compaction by vibration	26
2.7 Curing concrete	26
2.8 Compressive Strength	28

CHAPTER 3

EXPERIMENTAL PROGRAMME
3.1 Preamble
3.2 Materials
3.2.1 Cement
3.2.2 Fine Aggregate
3.2.3 Course Aggregate
3.2.4 Admixtures
3.2.5 Experimental results

3.3	Distribution by sieving	45
3.4	Fabrication and curing of	
	testing	45

CHAPTER 4

<u>GENI</u>	ERAL CONCLUSIONS - RECOMMENDATIONS	
4.1	Comments	60
4.2	Recommendations	65