HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

DESIGN AND CONSTRUCTION OF A MINEATURE UNDERWATER VEHICLE

M/1020

EVGENIOS EVGENIOU

JUNE 2006

DESIGN AND CONSTRUCTION OF A MINIATURE UNDERWATER VEHICLE

(Project Number: M/1020)

by

Evgenios Evgeniou

Project report submitted to the Department of Mechanical Engineering of the Higher Technical Institute Nicosia Cyprus

in partial fulfillment of the requirements for diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

JUNE 2006

ABSTRACT

The objective of this diploma project is to construct an underwater vehicle. For this purpose a survey on the design of underwater motorized vessels was conducted. The vessel will be radio controlled and able to submerge and execute simple movements under water. Detailed drawings of the proper design will be presented.

Firstly, the parameters of marine engineering design and construction were research, so as to understand and comprehend the principles upon which an underwater vessel depends on. Then literature survey was carried out, regarding the mechanical engineering section of the project. When the theoretical part was dealt with, several experiments were conducted to resolve factors, such as the construction material of the vessel, the power of the motor and the hydrodynamics of different shapes. All the above, were of great importance and vital to the final design of the vessel.

For the construction of the vessel the machinery and workspace of several workshops were utilised, in order to achieve maximum quality for the vessel. Despite practical problems and minor setbacks in the construction procedure, the vessel was finished and operated successfully.

Through this project, I was able not only to comprehend the marine and mechanical engineering aspects that were involved, but also to put into practical application all the knowledge gained through my studies at HTI. This is, in my opinion, my most important reward and achievement, since the idea behind such a diploma project is exactly that.

ii

CONTENTS

ABSTRACT	ii
CONTENTS	iii
LIST OF FIGURES AND GRAPHS	vi
LIST OF TABLE	vii
ACKNOWLEDGMENT	
ABBREVIATIONS	ix
CHAPTER 1: INTRODUCTION	1
AIMS AND OBJECTIVES	1
STRICTURE AND CONTENTS	1
CHAPTER 2: INTRODUCTION TO THE RELATED THEORY	3
2.1 WHAT IS AN UNDER WATER VEHICLE	3
2.1.1 Submarine density-Archimedes principle	4
2.1.2 Submarine hull strength- Hydrodynamic force	5
2.1.3 Air used by submarine operators	7
2.2 MAIN TYPES OF SUBMARINES	8
2.2.1 Static diving method	8
2.2.2 Dynamic diving method	10
2.3 THE RC (RADIO CONTROL) SUBMARINES	12
CHAPTER 3: METHODOLOGY ADOPTED	13
CHAPTER 4: DESIGN HARDWARE: RELATIVE THEORY	16
4.1 MEDIUM FOR RC SUBMARINES	16
4.2 DIVING METHOD FOR RC SUBMARINES	16

iii

4.3 MATERIALS FOR RC SUBMARINES	18
4.4 SHAPES FOR RC SUBMARINES	20
4.5 FORCES ON A SUBMARINE	21
4.5.1 Buoyancy force	22
4.5.2 Weight force	23
4.5.3 Propeller thrust	23
4.5.4 Resistance or drag force	27
4.6 RUDDER FORCE	30
4.7 HYDROFOILS	32
4.8 ELECTRONICS COMPONENTS FOR RC SUBMARINES	37
4.8.1 Electronic components needed	38
4.9 SEALING	40
CHAPTER 5: DESIGN HARDWARE: APPLIED THEORY TO	42
DESIGN	
5.1 MEDIUM IN WHICH THE SUBMARINE WILL OPERATED	42
5.2 SUBMARINE DIVING METHOD	42
5.3 MATERIAL FOR THE SUBMARINE HULL	44
5.3.1 Best Material selection	45
5.4 SUBMARINE SHAPE	47
5.4.1 Airfoil shape	47
5.4.2 Final shape of the submarine	48
5.4.2.1 Calculations for submarine overall volume density and	49
mass	
5.5 CALCULATION OF FORCES THAT ACT ON A SUBMARINE	57
5.5.1 Buoyancy force	57
5.5.2 Weight force	57
5.5.3 Propeller thrust and resistance calculations	59
5.5.3.1 Calculations made using the available components found	59
5.6 RUDDER FORCE CALCULATIONS	62

iv

5.7	HYDROPLANE FORCE CALCULATIONS	64
5.8	ELECTRONIC COMPONENTS SELECTED	66
<u>CH</u>	APTER 6: SUBMARINE TECHNICAL DRAWINGS AND	69
ME	THOD OF CONSTRUCTION	
CHA	PTER 7: COSTING	82
CHA	PTER 8: SUBMARINE TECHNICAL MANUAL	83
8.1	BLOCK DIAGRAM (ELECTRIC CIRCUIT)	83
8.2	TROUBLESHOOTING GUIDE	84
8.3	BATTERY CHARGING	85
8.4	FURTHER SUBMARINE OPPORTUNITIES	86
CHA	PTER 9: PRESENTATION OF RESULTS	87
CHA	PTER 10: CONCLUSIONS	89
APP	ENDICES	

REFERENCES BIBLIOGRAPHY

.