HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING

COURSE

DIPLOMA PROJECT

DESIGN OF A HYDRODYNAMIC

FORMIGN SYSTEM

M / 443

KYRIACOU MARIOS

JUNE 1989

HIGHER	PROJECT NO
TECHNICAL	1610
INSTITUTE	1510

HYDRODYNAMIC FORMING MACHINE by M. Kyriacou

SUMMARY

The task of the present thesis is to design a simple Hydrodynamic forming system for the production of pipe reducers and parabolic dishes.

Hydrodynamic forming is a relatively new method of forming and it has been developed and investigated for the cheap production of small numbers of large shaped components, usually, of unconventional materials. The results showed that this method offers an attractive alternative to existing methods of forming.

In the first chapter a brief surrey on explosives is given and the basics of transmission of explosive shock waves through water are studied. In chapter two the mechanics of energy transfer is studied and the energy transmitted to the blank in the form of a pressure wave is estimated. Chapters three and four investigate the explosive forming of parabolic dishes and pipe reducers respectively. Material selection and design calculations are carried out in each chapter. In the last part of the thesis detailed drawings of the above types of dies are produced.

CONTENTS

Contents		I
Acknowledgements	• • • •	III
Summary	• • • •	IV
Introduction		I
CHAPTER 1		
Literature surrey on explosives		8
1.1 General remarks		8
1.2 What is explosives		8
1.3 Transmission of explosive shock waves		
through water		9
1.4 Selection of explosive material		11
1.5 Energy released from explosive charges		12
CHAPTER 2		
Mechanics of energy transfer	• • • • •	13
2.1 General remarks		13
2.2 Energy transmitted to the blank		13
4.2.1 Geomatrical method		14
4.2.2 Energy method		15
4.2.3 Impulse method		19
4.2.4 Using charts		21
2.3 Reloading phenomenon		23
CHAPTER 3		
Explosive forming of parabolic dishes		. 25
3.1 General remarks		25
3.2 Theoretical investigations		. 25
3.2.1 Strain energy of deformation		. 25
3.2.2 Maximum permissible depth of draw	••••	. 37
3.2.3 Flange wrinkling		. 39
3.2.4 Springback	• • • • · ·	. 42
3.3 Selection of materials		. 42
3.3.1 Blank material		. 42

	3.3.2	Die m	aterial	• • •		• • •	• • •		••	• •	•••	•	••	••	•••	43
	3.3.3	Explo	sive ma	teria	al .					••	•••	• •	••			43
3.4	Design	n calc	ulation	s	• • •	• • •			•••		•••	••		••		44
	3.4.1	Total	strain	ener	rgy	of	de	for	ma	tid	on	•	••		•••	44
	3.4.2	Explo	sive ch	arge	red	quii	red			••	••	• •	• •	••		46
	3.4.3	Flang	e wrink	ling	••					• •	• •	• •		••		47
	3.4.4	Die t	hicknes	s					••	••	• •	• •		•••		48
3.5	System	n desc	ription	•••			• • •		••	••	••	• •	••	••		51
	3.5.1	Vacuu	m syste	m					••	••	•••	•••				51
	3.5.2	Under	water s	eal												51

CHAPTER 4

Explosive forming of pipe reducers	52
4.1 General remarks	52
4.2 Selection of materials	52
4.2.1 Workpiece material	52
4.2.2 Die material	53
4.2.3 Explosive material	53
4.3 Design calculations	53
4.3.1 Strain energy of expansion of pipe	53
4.3.2 Explosive charge	57
4.3.3 Die thickness	57
4.4 Vacuum system	60
References	61
Appendices	62
Detailed Drawings	73