HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

ENERGY RECOUERY FROM MUNICIPAL SOLID WASTES

¥i/869

TRAMOUNTAMELLIS YIANNOS JUNE 1999

ENERGY RECOUERY FROM MUNICIPAL SOLID WASTES

BY

TRAMOUNTANELLIS YIANNOS

Project Report

Submitted to the Department of Mechanical Engineering of the Higher Technical Institute Nicosia – Cyprus in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

IN

MECHANICAL ENGINEERING

May 1999

ACKNOWLEDGEMENTS

I would like to give my acknowledgement to my project supervisor Mr. Panayiotis Tramountanellis for the helpful and needed advises through out the project. Also acknowledgement is given to my sister which without her quidance, her advises and the information's which she provided me, that project wouldn't be done.

Also special acknowledgements are given to my mother and father for the great patience they have shown not only during the project but during my attendance at the H.T.I., because either by the stress of the exams or the pressure of studing, some times I wasn't my best I could be at home. I would like also to dedicate that project to my parents.

CONTENTS

ACKNOWLED	OGEMENTS	Ι
CONTENTS		Π
SUMMARY		V
INTRODUCTI	ON	1
CHAPTER 1:	NICOSIA REFUSE	3
1.1	About Nicosia	3
1.2	Kotsiatis Refuse.	3
1.3	Current Disposal Method	4
1.4	Future Consideration	6
CHAPTER 2:	SANITARY LADFILL	8
2.1	Introduction	8
2.2	General Consideration	8
2.3	Operational techniques	9
2.4	Site Selection	10
2.5	Landfill design	10
2.6	Landfill operation	11
2.7	Use of filled land	12
2.8	Advantages and Disadvantage	13

CHAPTER 3:	COMPOSTING		
3.1	Introduction	14	
3.2	The compost method	14	
	3.2.1 Removal of Noncompastable materials	15	
	3.2.2 Grinding or Shreading	15	
	3.2.3 Blending or Proportioning of materials	15	
	3.2.4 Placement for Composting	15	
	3.2.5 Mechanical methods	17	
3.3	Future of Composting	17	
3.4	Advantages and Disadvantages	18	
CHAPTER 4:	INCINERATION	19	
4.1	Introduction		
4.2	Principle features of an incinerator		
4.3	Incinerator operation		
4.4	International facts	25	
4.5	Advantages and disadvantages	26	
CHAPTER 5:	PYROLYSIS	27	
5.1	Introduction	27	
5.2	2 Description of Garret pyrolysis system		
5.3	Operating Experience	30	
5.4	Resulted products	31	
5.5	Advantages and Disadvantages	31	
CHAPTER 6:	CONCLUSIONS	32	

CHAPTER 7:		PRELIMINA	XY PLANT DESIGN 3	4	
	7.1	7.1 Capacity			
	7.2 Location			4	
	7.3	Refuse-Handli	ng Facilities3	5	
		7.3.1	Platform scales	5	
		7.3.2	Refuse pit	5	
		7.3.3	Feeding the furnace	5	
7.4 A 7.5 Fi		Ash Removal	conveyors	6	
		Furnace design	1	6	
	7.6	Heat Calculation	ons	7	
7.7 Air requirements			nts	2	
7.8 Energy recovery			гу4	2	
7.9 Air pollution control			ontrol 4	6	
	7.10 Induced Drought fan			6	
7.11 Stack				7	
7.12 Important Consideration		onsideration	7		
	7.13 Economic Consideration			8	
APPENDI	XES			9	
1.	Pit	Pit Design			
2.	Ma	iterial and Heat Balance for the furnace			
3.	The	eoretical Flame temperature			
4.	Hea	at Balance for the furnace			
5.	Air	requirements			
6.	Hea	eat balance for the boiler			
7.	Rar	kine Cycle			
8.	Ran	Cankine Cycle for the alternative			

- 9. Multi Effect Evaporation
- 10. Induced Draught fan

SUMMARY

A survey on a Town Refuse Disposal Methods

by Tramountanellis Yiannos (3M2)

Summarized objectives of the study

The project aimed at:

- (a) Carrying out an investigation into the various viable methods of refuse disposal.
- (b) Critically analyse the characteristics of these methods and select the most appropriate which can meet the Nicosia needs.
- (c) Discuss in detail the selected option and present design calculations, drawings and technical specifications for the plant.

Methodology

The following methodology was used in carrying out this study:

- (a) The relevant literature was studied in detail and an overall appreciation was gained.
- (b) Relevant information was collected using two methods:
 - (i) desk research,
 - (ii) field research using primarily the interview method
- (c) All collected data was classified and analysed
- (d) Conclusions were reached.

Findings

The current investigation supports the view that the most appropriate method for refuse disposal is the incineration. The option of sanitary landfill was rejected because of the negative impact of the environment and the intese sensitivity prevailing in the community.

Incineration entails the following positive features:

- (a) Produces electricity
- (b) Gets rid of industrial waste water
- (c) Eliminates the possibilities of pollution of the ground water
- (d) Some material recovery can be established

INTRODUCTION

Hazardous waste have only come to be regognized as a priority problem over the past 10-15 years. Action to control hazardous has too often been precipitated by an actual or potential environmental disaster.

Hazardous wastes can cause immediate, short-tem, public health problems as well as long term environmental pollution. Proper control of hazardous wastes does not cost money, but experience in a number of developed countries suggest that clearing up the "sins of the past" is much more expensive in the long term. For example in the United States clean up of improperly managed wastes has been estimated to cost 10-100 times as much as proper early management. It is therefore important that all developing countries institute controls over hazardous (and not only) wastes to avoid such excessive costs in the years coming.

The inappropriate and often careless handling of municipal and industrial wastes, including those are hazardous, has very of ten created problems all over the world for human health and environment. Effective control of hazardous wastes is of paramount importance for proper health and environmental protection and natural resource management.

Therefore, coming to the aspect of the project to conduct an investigation into the various methods of town refuse disposal methods. Landfills Composting, Incineration and Pyrolysis will be discussed in the following chapters, aiming to find the most appropriate and useful method that can be established to cover the requirements of the city of Nicosia.

But before concluding the methods of disposal, several aspects shall be concern, in general. Gross Calorific values vary from 9-12 MJ/Kg and obviously it has a continuos rising over the years as paper, plastic, rubber are rising too. Also if we look at the figure 1-1 is obvious of what quantities of refuse and this energy we are dealing with. In Cyprus at the moment that energy is not utilized, neither the method of disposal at kotsiatis covers the needed safetys. That is a major problem which the authorities don't

1

pay much attention, but my estimation is that, if nothing's done in the following 15 years in order to improve or adopt a new waste disposal method, major problems will begin to rise threading the human life. All those factors lead to an improvement of the waste disposal, or even to take advantage of that huge quantity of energy, with methods which are about to be shown at the following chapters.

Planning of refuse collection and selection of the appropriate method of disposal requires organized preceded work based on accurate and reliable organized preceded work based on accurate and reliable figures. These figures and the disposal methods which are going to be mentioned will help us, to get a full ideal about the problem and the methods used, thus taking the appropriate conclusions.

FIGURE 1-1

Order of Magnitude of Hazardous Waste Production in Individual Countries

Estimated range of hazardous waste production