HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE

DIPLOMA PROJECT

ENERGY MANAGEMENT CONSIDERATION IN LARGE BUILDINGS

E/984

EFTYCHIA NICOLAOU

JUNE 1995

HIGHER TECHNICAL INSTITUTE Nicosia - Cyprus

ELECTRICAL ENGINEERING DEPARTMENT

Diploma Project

ENERGY MANAGEMENT CONSIDERATION IN LARGE BUILDINGS

EFTYCHIA NICOLAOU

E. 984

JUNE 1995

ACKNOWLEDGEMENTS

- (a) I would like to express my personal thanks to my
 Project Supervisor Mr. P. Theopemptou lecturer of the
 Electrical Engineering Department of H.T.I.
- (b) My thanks also to my family for their support and guidance throughout the three years in H.T.I.

CONTENTS

SUMMARY

INTRODUCTION

CHAPTER 1	: Electricity audit	
1.1	General	1
1.2	Methods of electricity audit	2
1.2.1	Manual electricity audit	2
1.2.2	Automatic electricity audit	4
1.3	Method adopted	5
CHAPTER 2	: Existing conditions of electricity	
	utilisation in the hotel	
2.1	Historical analysis, Electricity, GAS,	
	Oil consumptions Occupancy	6
2.2	Analysis of the installed load	11
2.2.1	Lighting	11
2.1.1(a)	Remarks on the utilisation of the existing	
	lighting fittings	17
2.2.2	Power	18
2.2.2(a)	Remarks of the utilisation of the existing	
	power loads. How to assess the lighting	
	conditions	22
CHAPTER 3	3 : Recommendations for reducing the	
	cost of electricity	
3.1	Lighting	25
3.1(a)	Replacement of 38 mm Φ fluorescent tubes	
	by new low power $26 \text{mm}\Phi$ fluorescent tube	26
3.1.1(b)	Replacement of GLS lamps with Eureca	
	Electronic ones	26
3.1.2	Installation of a key fob system	47

3.1.3	Further recommendation for the	
	installation	48
(a)	use of photocells	48
(b)	use of time switches	49
(c)	use of ripul control system	49
(d)	use of ultrasonic detector switch	50
(e)	modification of the switching arrangement .	51
3.2	Recommendations for reducing the	
	electricity consumption of the motors	51
3.2.1	Energy efficient motor	51
3.2.2	Proper sizing of motors	52
3.2.3(a)	Necessary instructions for the	
	implementation of the proposed ener	gy
	conservation schemes	61
3.2.3(b)	Good housekeeping and proper energy	
	management	62
3.2.3(c)	Suggestions for minimizing the electricity	
	consumption of the air conditioning	64
CONCLUSION	NS	65
REFERENCES	5	66

APPENDICES

Energy Management consideration in large buildings By Eftychia Nicolaou

This project in its first chapter deals with a brief study of electricity auditing methods and a suitable method for electricity auditing is selected to be used for the energy survey in Europa Hotel in Nicosia.

The results of the survey are listed in Chapter 2 and furthermore comments are made on the condition of the existing load utilisation.

The results from the basis on which recommendations are made (Chapter 3) for energy conservation measures.

In the final stage of the project measures for energy savings were proposed and their effects were analysed. Significant savings had been shown out with attractive payback periods.

INTRODUCTION

The need to conserve our declining fuel resources, especially of oil and natural gas is now widely accepted. By moderating our demand for energy we can usefully extend the period of time available for the safe and proper development of alternative sources. As it is already known energy is linked to food production industrial output, wealth health and lifestyle. Over half of the energy used by man is wasted and the more drastic energy-saving measures might require unacceptable changes to our present life.

There is a real need to conserve conventional forms of energy especially in industry and commerce. Industry and commerce should require little convincing of the need to conserve in order to cut their costs and to remain competitive.

Since an increasing portion of energy requirements is met in the form of electricity the efficient use of electricity has become an urgent international goal.

At a time when fuel shortages are occurring, prices are escalating and environmental constraints on energy conversion are increasing improved efficiency of utilisation is the best short term alternative for insuring that adequate supplies of electric energy remain available.

Electricity in Cyprus is almost the unique form of energy for commercial and industrial users, as well as for the domestic sector the cost of electricity often has significant impact on their present activities and their present activities and their future plans. Proper energy management leads to an important control of the energy cost but at the same time provision of future energy requires substantial capital investment on the supply side. Expenditure on energy conservation reduces this requirement and provides recurring savings for endusers usually at a far better rate of return.

In this project information relating to the end-uses of electricity in "Europa Hotel" in Nicosia are collected and analysed. Suggestions are made on measures of electricity savings given in addition a view of the financial benefit resulting from the application of such measures.