HIGHER TECHNICAL INTITUTE ACAD. YEAR 1991-1992 ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT INTERFACING SENSORS TO THE IBM PC

NEOKLEOUS NEOKLIS

E /827 SUPERVISOR: Mr. SOTIRIS HADJIOANNOU EXTERNAL ASSESSOR: Mr. FALAS ANASTASIOS

1989

INTRODUCTION

This project present hardware and software design for interfacing a variety of sensors to the IBM PC. The aim of this project is to enable the IBM PC to read physical quantities. Also some output devices are attached. So the PC it analyze the information which take from the input sensors and drive accordingly the output devices.

Many sensors provide analog voltage levels. The computer can understand only digital signals, 8-bit, 16-bit, 32-bit etc. The IBM PC can understand only 8-bit signals as all the external signals are 8-bit while the processor instructions are 16-bit. An Analog to Digital Converter, ADC, was used to perform the change of the analog voltage to digital signal.

To interface to the IBM PC system bus an Input Output, I/O, card was design and constructed providing 24 lines for I/O use. These two 8-bits and two 4-bit ports are occupy a certain address in the memory of the PC. Each one of the four ports can be controlled by software and can be either input or output port. Also the ports can set to work in handshaking mode by software. All signals at the IBM PC system slot are explained.

Temperature, optical, displacement and other sensors were used as input sensors. The TRIAC with zero voltage switching action, the stepper motor, the DC motor, the relay and other devices were used for output purpose.

By making combinations of the input sensors and output devices different applications were achieved. 1) The control of the power of a heater in accordance to the temperature of the room and the temperature outside the room that the heater is installed. 2) The illumination of an incandescent lamp was regulated by adjusting the power of the lamp. This project can also be used as DATA acquisition system.

The software was developed in TURBO PASCAL language using ready made units and pascal objects, in Object Oriented Programming, OOP. The program is friendly user and uses the graphic mode for displaying graphs.

CONTENTS

CHAPTER 1	A COMPUTER SYSTEM	
	1.1 General	2
	1.2 Central Processing Unit	2
	1.3 Memory	4
	1.4 Peripherals	6
	1.5 Software	7
CHAPTER 2	INTERFACING TO THE IBM PC	
	2.1 Introduction	1
	2.2 The IBM PC system slot	1
	2.3 The 8255 PPI	14
	2.4 Parallel I/O ports design	18
	2.5 PCB design	22
	2.6 Testing	23
CHAPTER 3	ANALOG INPUT INTERFACE	
	3.1 General	26
	3.2 Characteristics of ADC	26
	3.3 Signals of ADC	30
	3.4 ADC Conversion technic's	31
	3.4.1 Counter type	32
	3.4.2 Dual slope ADC	33
	3.4.3 Voltage to Frequency Converter type	35
	3.4.4 Successive approximation technic	37
	3.4.5 Flush type ADC	39
	3.4.6 Shaft encoder type	40
	3.5 Design of the Analog input interfacing card	41
	3.5.1 The ADC0804	42
	3.5.2 Analog multiplexing	44
	3.5.3 Design of the circuit	45
	3.6 Testing	48
	3.7 Conclusions	50

帶過國內 普拉卡 化燃料

CHAPTER 4 INTERFACING SENSORS

4.1 Transducer and sensors	52
4.2 Characteristics of a measurement system	52
4.2.1 Dynamic performance	53
4.2.2 Static performance	54
4.3 Temperature sensors	55
4.3.1 Platinum resistance	55
4.3.2 Thermocouples	56
4.3.3 Thermistors	58
4.3.4 Temperature measurement system	58
4.4 Optical sensors	66
4.5 Displacement sensors	69
4.6 Conclusions	71

CHAPTER	5	INTERFACING OUTPUT DEVICES
		5.1 General
		5.2 Interfacing a stepper motor
		5.3 Interfacing a DC motor 78
		5.4 Relay control 80
		5.5 TRIAC control 81
		5.6 Conclusions 85

CHAPTER 6 APPLICATIONS

5.1 General	88
5.2 Temperature control	88
5.3 Illumination indication system	90

CHAPTER 7 SOFTWARE

7.1	General	93
7.2	Analysis	93
7.3	Listing	100

APPENDIX A

DATA SHEETS