HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

ECONOMICS OF A SOLAR POWERED GREENHOUSE IN CYPRUS

E. 1397

VLADIMIROS VLADIMIROU

JUNE 2006

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING

DIPLOMA PROJECT

ECONOMICS OF A SOLAR POWERED GREENHOUSE IN CYPRUS

E1397

VLADIMIROS VLADIMIROU

June 2006

CONTENTS

ABSTRACT

.

CHAPTER 1			INTRODUCTION	3
1.1			Greenhouse Production in Cyprus	3
CHAPTER	2		GREENHOUSES IN CYPRUS	8
2.1			Greenhouse Ventilation	8
	2.1.1		Winter Ventilation	8
	2.1.2		Summer Ventilation	9
	2.1.3		Spring-Fall Ventilation	10
	2.1.4		Determining Ventilation volume rates	10
	2.1.5		Air distribution within greenhouses	11
	2.1.6		Natural Ventilation	12
	2.1.7		Fan and nad greenhouses	1.00
			evaporating cooling system	13
		2.1.7.1	Temperature Gradient	18
		2.1.7.2	System efficiency	18
		2.1.7.3	Factors that influence fan and pad	10
			Evaporative cooling system	19
		2.1.7.4	Fan and pad cooling system operation	24
	2.1.8		Computers and micro controls	24
CHADTED				
CHAPTER	3		SOLAR ENERGY	26
3.1			Indirect Uses	26
3.2			Solar Radiation in Cyprus	26
3.3			Photovoltaic solar system	
			market in Cyprus	29
3.4			Practical Applications of photovoltaic	
			solar system in Cyprus	29
3.5			Photovoltaic fundamentals	29
3.6			How a pv cell works	30
3.7			How a pv system works	31
3.8			Type of pv system	32
3.9			Grid-connected or utility- interactive	
			pv systems	32
3.10			Stand-alone photovoltaic system	33
3.11			How pv cells are made	34
3.12			Pros and cons of pv	35
CHADTED				
CHAFTER	4		SIZING OF STAND ALONE SYSTEM	L
4.1			Calculating the power supply	
			for stand-alone installation	37
4.2			Design of the solar system	38
4.3			Calculation of accumulator requirements	39

CHAPTER 5	COSTING OF THE SYSTEM	41
CHAPTER 6	DISCUSSION-CONCLUSIONS	43
REFERENSES		45

Abstract

Greenhouses are gaining in importance year by year in Cyprus. There is a great need to control the environment inside the greenhouse in order to optimized the production. In order to do that modern system are required like:

- Heating system
- Cooling system
- Automatic side and roof ventilation
- Air recirculating fans
- Automatic controller

In order to operate all these systems electricity supply is required. Electricity can be provided from the grid in case the greenhouse is located near the grid network. In case the greenhouse is located in remote area the electricity supply can be provide by an electric generator or from photovoltaic cells utilizing the solar energy. In this work it is examined whether such a solar system is economically feasible. The return on investment of a greenhouse supplied from the grid and the greenhouse supplied from a solar system is compared it is shown that the cost of a solar system is very high and that the electricity supply to a grid house under examined situation is not feasible.