HIRCHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A SURFACE WATER
PUMP

MI/767

BY: NICOLAOU NICOLAOS

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A SURFACE WATER PUMP

M/767

BY: NICOLAOU NICOLAOS

JUNE 1996

DESIGN OF A SURFACE WATER PUMP

by

NICOLAOU NICOLAOS

Project Report Submitted to

the Department of Mechanical Engineering
of the Higher Technical Institute
Nicosia Cyprus

in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEERING

in

MECHANICAL ENGINEERING

JUNE 1996

Project Supervisor: Dr. A. Lazari

HIGHER PROJECT NO TECHNICAL 2608

ACKNOWLEDGEMENTS

Primarily I would like to express my gratitude to my Project Supervisor Dr. L. Lazaris, lecture at he Higher Technical Institute, for his assistance, patience and encouragement throughout this project.

This project is dedicated to my parents.

CONTENTS

INTRODUCTION	1
CHAPTER 1. TYPES OF WATER PUMPS	
1.1. Reciprocating pumps	2-4
1.2. Rotary pumps	5-7
1.3 Rotodynamic pumps	8-9
	,
CHAPTER 2. PUMP AND PIPING SYSTEMS	•
2.1. Pump Installations	10-11
2.2. Terms and definitions	12-15
2.3. Energy losses and Efficiencies	16-20
2.4. Dimensionless coefficients and similarity laws	21-22
2.5. The specific speed of pumps	23-24
2.6. Pump and piping system characteristics	25-31
2.7. Equivalent length for minor losses	32-33
2.8. Cavitation in pumps	34-37
2.9. Pump Selection	38
CHAPTER 3. JET PUMPS	
3.1. Deep-Well Eductors	40
3.2. Eductors	41-42

CHAPTER 4. DESIGN ANALYSIS

4.1. Design Analysis	43-44
4.2. General Data	45-46
4.3. Calculations for the design for the surface water pump	47-53

DETAIL DRAWINGS

REFERENCES

INTRODUCTION

The purpose of this project, was to Design a surface water pump.

This system will pump water from a 30_m deep well with the help of an eductor. This type the eductor pump has come into wide use for small capacities combine a single-stage centrifugal pump at the top of the well and an ejector or jet located down in the water.

In this type of pump an amount of water must to be recycled so to flow water in the eductor in high pressures. The amount of water required to flow down the pressure pipe for jet operation increases as the lift from well-water level increases.

When the pump is used with the jet, the centrifugal pump operates at it's best efficiency and delivers water to make the jet work. The jet adds to the suction pressure on the centrifugal pump so that the two generate head in excess of that produced by the centrifugal pump alone. This is with reduced external discharge so a low capacity high-head unit results.

This low-capacity high-head unit is repaired in many small water systems. The centrifugal pump with a jet suction-lift limits and good operating limits.

The surface water pump can been required if there is any problem easier because it is of the well and out of the water instead of a turbine which is also extensively used. It can also be installed easier than the turbines and it costs less than a turbine.