AN EXPERIMENTAL INVESTIGATION ON THE

IMPACT STRENGTH OF FIBRE REINFORCED CONCRETE

by

MARIA MICHAEL

AND

MILITSA SIZINOY

Project Report

Submitted to

the Department of Civil Engineering

of the Higher Technical Institute Nicosia Cyprus

in partial fulfilment of the requirements for the diploma of TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 1991

Project No. C/595

Project Supervisor : Dr. H. Stavrides External Supervisor :

Type of project : Individual

Group

ABSTRACT

The main objectives of this project are to examine the effect of steel fibres on impact resistance, flexural strength, toughness, compressive strength, workability and the effect of accelerated curing on concrete.

This project is divided into four chapters. In the first chapter an introduction was made concerning mostly types of fibres, their general characteristics and applications.

The second chapter deals with curing of concrete and past research on accelerated curing.

The third chapter deals with the properties of Steel-Fibre-Reinforced-Concrete from previous research.

Finally, the last chapter deals with the experimental part, as well as with general conclusions and recommendations for future work.

CONTENTS

Pages

<u>CHAPTER 1</u>		
1.1	General	1
1.2	Types of fibres	2
1.2.1	Characteristics - Applications	3
1.2.1.1	Plastic fibres	3
1.2.1.2	Glass fibres	5
1.2.1.3	Steel fibres	6
1.2.1.4	Other types of fibres	8
1.3	Use of fibres in Cyprus	10
1.4	Applications of steel fibres	11
1.4.1	Industrial floor slabs	11
1.4.2	Concrete pavements	12
1.4.3	Port pavements	12
1.4.4	Shotcrete	13
1.4.5	Refractory concrete	13
1.4.6	Miscellaneous	14

CHAPTER 2

2.1	Introduction	18
2.2	Methods of curing	21
2.3	Accelerated curing tests	22

CHAPTER 3

3.1	Introduction	27
3.2	Flexural strength	29
3.3	Flexural toughness	33
3.4	Tensile strength	34
3.5	Compressive strength	36
3.6	Impact resistance	38
3.7	Workability	40
3.8	Size and type of aggregate	41
3.9	Method of compaction, time of vibration	
	and degree of compaction	44
3.10	Abrasion - Erosion - Cavitation	47
3.11	Shrinkage and creep	48
3.12	Durability	49
3.13	Temperature extremes	52
3.14	Shear and torsion	54

3.15	Fatigue resistance	55
3.16	Dynamic modulus	56
3.17	Effect of method of casting	58
3.18	Specimen size on flexural strength	60
3.19	Mode of failure	61
3.20	Direction of loading	63

CHAPTER 4

4.1	Introduction	64
4.2	Materials	64
4.2.1	Aggregates	64
4.2.2	Cement	64
4.2.3	Water	65
4.2.4	Steel fibres	65
4.2.5	Plasticizer	65
4.3	Apparatus	65
4.4	Specimen casts - Mix proportions - Mix	
	procedures - Curing	70
4.5	Impact strength	72
4.5.1	Introduction	72
4.5.2	Results	72
4.5.3	Comments on the results	79
4.6	Compressive strength	85
4.6.1	Introduction	85
4.6.2	Comments on the results	88
4.7	Flexural strength	89
4.7.1	Introduction	89
4.7.2	Results	90
4.7.3	Comments on the results	93
4.8	Workability	95
4.8.1	Introduction	95
4.8.2	Results	95
4.8.3	Comments on the results	99
4.9	General conclusions	100
4.10	Recommendations for future works	102