HIGHER TECHNICAL INSTITUTE

NICOSIA - CYPRUS

CIVIL ENGINEERING COURSE

DIPLOMA PROJECT

SITE INVESTIGATION

C / 789

SHIATHAS A. CHRISTOS

JUNE, 1996

SUMMARY

The Site Investigation is a comprehensive study that may cover all aspects of the site conditions. Its extent and type depend on the site conditions of each particular site, on the type of the proposed structure and very often on the budget approved for the investigations.

Site Investigation may be required not only for new works, but also for the extension of existing ones, for damaged works, for the safety of existing works etc.

The desk study involving collection and assessement of existing available data and the site inspection prior to the exploration programme preparation is an essential part of the Site Investigation. A preliminary study is usually carried out and if the project is proved to be feasible the detailed study follows.

Engineering geological survey, followed by excavation of trial pits, trenches or adits and the necessary number of borings in combination with in situ and laboratory testing are the most common techniques of Site Investigation.

The evaluation of all the data obtained in combination with the existing ones are incorporated in a technical report with the conclusions and recommendations of the geotechnical consultant.

The objectives of this project are :

- To give an extensive account on the types of Site Investigation, its extent and the various techniques used. Special emphasis has to be given to the presentday practice of the Cyrpus construction industry.

- To participate both field and office works of a site investigation study involving boring, in situ and laboratory testing, aiming

i) to assess the general suitability of the site for the proposed works,

ii) to foresee and provide against difficulties that may arise during construction and completion of project due to ground and other local conditions,

iii) to enable an adequate and economical design to be prepared.

The results of this site investigation are presented in this work as a case study. The writer was deeply involved in all stages of the site investigation including the preparation of the technical report.

CONTENTS

PAGES

ACKNOWLEDGEMENTS SUMMARY

CHAPTER	1:	INTODUCTION	1
	1.1	SCOPE and OBJECTIVES of	
		S.I.	1
	1.2	INFORMATION REQUIRED	3
CHAPTER	2:	TYPES OF S.I.	4
CHAPTER	3:	PLANNING THE EXPLORATION PROGRAM	5
	3.1	COLLECTION of all AVAILABLE	6
	3 2	PRFLIMINARY S I	6
	3.3	DETAILED S I	7
	0.0		/
CHAPTER	4:	METHODOLOGY AND TECHNIQUES	
		FOR SURFACE AND SUBSURFACE	
		EXPLORATION	8
	4.1	DESK STUDY	8
	4.2	PRELIMINARY FIELD, IN-SITU	
		EXAMINATION	8
	4.3	EARTH EXCAVATION TECHNIQUES	8
	4.3.1	Trial Pits	8
	4.3.2	Trenches	9
	4.3.3	Headings (Adits)	9
	4.4	BORING/DRILLING	9
	4.4.1	Rotary Drilling	9
	4.4.2	Percussion Boring	10
	4.4.3	Augers	10
	4.4.3.1	Mechanical Augers	10
	4.4.3.2	Hand and Portable Augers	11
	4.4.4	Wash Boring	11
	4.4.5	Number and Depth of Borings	12
	4.4.6	Borohole Records	12
	4.5	SAMPLING	13
	4.5.1	Sampling Techniques	13
	4.5.2	Samplers	13
	4.5.3	Sample Quality	14
	4.6	GEOPHYSICAL METHODS	15
	4.6.1	Electrical Resistivity Method	15
	4.6.2	Gravitational Method	15

	4.6.3	Magnetic Method	16
	4.6.4	Seismic Method	16
	4.7	IN-SITU TESTING	17
	4.7.1	Standard Penetration Test	17
	4.7.2	The Cone Penetration Method	18
	4.7.3	The Pressuremeter Test	18
	4.7.4	Plate Bearing Test	18
	4.7.5	Field Vane Test	19
	4.7.6	Soil Compaction	
		Characteristics in the Field	19
	4.7.7	Determination of Bulk Density	20
	4.7.8	California Bearing Ratio	
		C.B.R. Test	20
	4.8	LABORATORY TESTING	21
	4.8.1	The Atterberg Limit Test	21
	4.8.2	Particle Size Analysis	22
	4.8.3	The Direct Shear Test	
		(Shear Box)	22
	4.8.4	The Trixial Compression Test	24
	4.8.5	California Bearing Ratio	
	<i>6</i> , .	C.B.R. Test	24
	4.8.6	Oedometer Consolitation Test	24
	4.8.7	Determination of Water Content	
		of Soils	25
	4.8.8	Determination of Specific	
		Gravity of Soils	25
	4.8.9	Determination of the LInear	
		Shrinkage	25
	4.8.10	Determination of the Organic	
		Matter Content using the	
		Loss-On Ignition Method	25
	4.9	REPORTING	26
CHAPTER	5:	PRESENT DAY PRACTICE OF THE	
		CYPRUS CONSTRUCTION INDUSTRY	27
CHAPTER	6:	CASE STUDY	30

·

. .