BIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING COURSE DIPLONA PROJECT

PART PROGRAMMING ON A CHC VERTICAL MILLING MACHINE AND DESIGN OF A MILLING FIXTURE

M/888

TSIAPPOS ANDREAS

HIGHER TECHICAL INSTITUTE MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

PART PROGRAMMING ON A CNC VERTICAL MILLING MACHINE AND DESIGN OF A MILLING FIXTURE

M/888

TSIAPPOS ANDREAS

JUNE 2000

HIGHER	PROJECT NO.
TECHNICAL INSTITUTE	3176

PART PROGRAMMING ON A CNC VERTICAL MILLING MACHINE

By TSIAPPOS ANDREAS

PROJECT REPORT SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING OF THE HIGHER TECHICAL INSTITUTE

,

NICOSIA-CYPRUS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DIPLOMA OF TECHICAL ENGINEER IN MECHANICAL ENGINEERING

2000

2

THIS PROJECT IS DEDICATED

TO MY FAMILY AND TO MY UNCLE GEORGE MATZILA

ACKNOWLEDGMENT

I would like to express my appreciation and thanks to my supervisor **Dr. Vassilios Messaritis** lecture in the Mechanical Department at Higher Technical Institute for his guidance and assistance given during the project period.

> Tsiappos Andreas 3rd year student in Mechanical Engineering Higher Technical Institute June 2000

DIPLOMA PROJECT 1999/2000

Project Number: M/888

Title: "Part Programming on a CNC Vertical Milling Machine and Design of a Milling Fixture".

Objectives:

- 1. Study the programming and machining characteristics of the Bridgeport IMKII (with TNC 115 Heidenhein control) CNC vertical milling machine.
- 2. Produce detail drawings of the components to be manufactured.
- 3. Design a milling fixture to ensure location support and clamping of the component to be manufactured. Detailed drawing of the proposed fixture must be prepared.
- 4. List the procedure to be followed for machining each component each of the two components.
- 5. Write a part program for the manufacture of each component.
- 6. Make use of linear interpolation, circular interpolation and canned cycles.
- 7. Test of the above programmed on the Heidenhein control simulation facility

Terms and conditions:

5

- 1. All recommendations should be according to ISO.
- 2. Selection of components for the milling fixture should be according to standard components.

Student: Tsiappos Andreas (3ME1) Project Supervisor: Dr. Vassilios Messaritis

ABSTRACT

The main objectives of this project are to manufacture components by use of the CNC vertical milling machine and to construct a milling fixture to locate, support and clamping of the components.

In order to manufacture the components the programming characteristics of the Bridgeport IMKII (with TNC 155 Heidenhein control) CNC vertical milling machine must be studied.

Finally all part programming has to be performed by using linear, circular interpolation and canned cycles.

1

CONTENTS

ACNOWLEDGEMENTS ABSTRACTS

CHAPTER 1

	Pages
1. Introduction	1
1.1 Milling	1
1.2 Definition of NC/CNC	2
1.3 Historical perspective	3
1.4 Advantages of CNC/NC machines	3
1.5 Applications of CNC/NC machines	4

,

CHAPTER 2

2. Programming	5
2.1 Input data	5
2.2 Part programming	6
2.3 Programming Words	7
2.4 Miscellaneous Functions	8
2.5 Preparatory Functions	8
2.6 Positioning control	11
2.7 Types of interpolations	12
2.7.1 Linear interpolation	13
2.7.2 Circular interpolation	14
2.8 Canned cycles	15
2.9 Methods of dimension	16
2.9.1 Absolute dimensions	16
2.9.2 Incremental mode	17
2.10 Tooling for NC/CNC machines	18
2.11 Tool offset	21
2.11.1 Tool length offset	21
2.11.2 Tool radius offset	22

CHAPTER 3

3. Fundamentals of CAD/CAM	23
----------------------------	----

3.1 CAD	23
3.2 A typical CAD system	24
3.3 Advantages of CAD	25
3.4 Disadvantages of CAD	26
3.5 CAD/CAM	26

CHAPTER 4

4. Fixtures	27
4.1 Definition and purpose of fixtures	27
4.2 Fixture design	28
4.3 Milling fixtures	29
4.4 Material used in the fixtures	30
4.5 Clamping Elements	31
4.6 Location	32

CHAPTER 5

5.Speed and feed	33
5.1Indroduction	33
5.2 Cutting speeds	33
5.3 Feeds	35

1

CHAPTER 6

6. Bridgeport vertical milling machine	37
6.2 The capabilities of the machine	38
6.3 TNC 155 Heidenhain control features	41

CHAPTER 7

Component design 1	44-55
Component design 2	56-66

CHAPTER 8

Fixture 1	design	67-69
Fixture 2	design	70-71

CHAPTER 9

9.1 CNC program for the first machining operation9.1 CNC program for the second machining operation	74 83
CHAPTER 10	
10.1 Conclusions References	88 89

,

APPENDICES