NIGHER TECHNICAL INSTITUTE CNIL ENGNERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A FACILITATIVE LAGOON

C / 852

BY: ANASTASIOS MICHAEL

JUNE 1978

DESIGN OF

ï

A FACULTATIVE LAGOON

by

Anastasios Michael

Project Report Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia Cyprus in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 1998

CONTENTS

ACKNOW	LEDGEMENTS	iv
SUMMAR	Y	v
INTROD	UCTION	vi
1	<u>CHAPTER ONE</u> DOMESTIC WASTEWATER, CHARACTERISTICS, QUALITIES, DISPOSAL PROBLEMS	1
1.1.1 1.1.2 1.1.3	What is Sewage? Wastewater Characteristics - Composition Characterization of Wastewater Strength of Wastewater Why Treat Wastewater	1 1 3 5 7
1.2.3	Essential Wastewater Microbiology Role of Microorganisms Classification of Microorganisms Microbes of Interest in Wastewater Treatment Pathogen Indicators	9 9 9 11 19
2	<u>CHAPTER TWO</u> ENGINEERED SYSTEMS FOR MUNICIPAL WASTEWATER TREATMENT	21
2.1.1 2.1.2 2.1.3	Principles of Sewage Treatment Performance Criteria for Treatment Plants Effluent Standards Siting of Treatment Works Problems in Hot Climates - Odour Control	21 21 22 23 24
2.2	Terminology in Sewage Treatment	25
2.3.2 2.3.3 2.3.4	Preliminary Treatment Purpose Screening Grit Removal Comminution Flow Measurement - Equalization	27 27 28 28 29 31
2.4.1	Primary Treatment Purpose Primary Sedimentation	33 33 34

2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	Secondary Treatment Purpose Activated Sludge Activated Sludge Clarifiers Attached-Culture Systems Attached-Culture Systems Clarifiers Waste Stabilization Ponds Disinfection of Effluents	36 36 37 38 40 45 47 50
2.6.1 2.6.2	Advanced Wastewater Treatment Purpose Nutrient Removal Solids Removal	51 51 52 54
2.7	Effluent Reuse	56
3	<u>CHAPTER THREE</u> PRINCIPLES OF OPERATION OF A FACULTATIVE LAGOON SYSTEM	59
3.1	Introduction	59
3.2	Types of Pond	59
3.3.2 3.3.3 3.3.4 3.3.5	Waste Stabilization in Ponds Anaerobic Ponds Facultative Ponds Maturation Ponds Major Microbial Groups Nitrogen and Phosphorous Removal Toxicity Factors	60 60 61 64 65 67
3.4	Advantages and Disadvantages	67
3.5.2 3.5.3 3.5.4 3.5.5	Process Design Guidelines Effluent Standards Number of Ponds Design Parameters Facultative Lagoons Maturation Ponds Small Communities	68 68 69 70 74 75
3.6.2 3.6.3 3.6.4	Physical Design Guidelines Pond Location Geotechnical Considerations Hydraulic Balance Pretreatment Pond Geometry	77 77 77 78 81 81

3.6.6	Inlet and Outlet Structures	84
3.6.7	Security - Operator Facilities	84
3.7		87
	Commencement Procedures	87
3.7.2	Routine Maintenance	87
3.8	Monitoring and Evaluation	88
3.9	Reuse of Pond Effluent	89
4	CHAPTER FOUR	91
	DESIGN OF A FACULTATIVE LAGOON SYSTEM	
	Served Communities	91
	Brief Reference	91
	Need for Water for Irrigation Purposes	91
4.1.3	Choice of Treatment Method	92
4.2	Site Selection	93
4.3	Design Review	94
4.3.1	Design Data	94
	Design Preliminaries	95
4.3.3	Detailed Calculations	96
4.3.4	Design Summary	101
CONCLUSIONS - RECOMMENDATIONS		
REFERENCES		105

APPENDIX (MAPS & DRAWINGS)

ACKNOWLEDGEMENTS

I would like to thank my supervisor Mr. N. Kathitziotes for the substantial help he offered me, during all stages of my work.

I express my gratitude to Ms Evi Theopemptou from the Sewerage Board of Nicosia, for she was always willing to spend part of her valuable time in providing any kind of help I needed.

Finally, I thank my parents and George for their great assistance, from the beginning to the end, in organizing my work and making it possible in getting it in its final form.

iv

SUMMARY

The purpose of this work was the design of a wastewater treatment system, with its major component being a facultative lagoon, for treating the wastewater arising from a specific community.

The design was carried out for the communities of Astromeritis and Peristerona, with the proposed site being near Astromeritis. The proposed irrigation area is the part of the Morphou Plain near Astromeritis.

One of the simpler schemes was implied for the waste stabilization ponds, comprising a facultative lagoon and two subsequent maturation ponds in series, a system not requiring any external -apart from solar- energy at all.

This system is capable of producing an effluent suitable for irrigation and this may be utilized for irrigating the local citrus plantation as well as the rest of the cultivities, being vegetables and fodder crops.

Unrestricted irrigation is to be carried out only during the period of May-October. For the rest of the year, the effluent should be stored in a storage pond for a period of 30 days for further removal of excreted pathogens and hence released.

INTRODUCTION

The overall population of the Earth keeps increasing with a very high rate. A contemporary, noticeable fact is that of the non-uniform distribution of people, since a rapid increase in urban populations was observed relatively recently. The main reason for that was impetuous evolution of industry, with the majority of the industrial, work offering units been sited at urban areas.

As a direct consequent, the natural and manufactured wastes generated and released in to the environment by these increased numbers of human beings have upset the natural equilibrium.

Human waste disposal became - from a point and after troublesome. Traditional methods of domestic sewage disposal, such as land spreading, discharge into coastal and estuarine waters and other ways scoping practically in "getting rid of" untreated sewage, resulted in environmental deterioration, gross pollution and adverse effects on human health. That is why the need for developing intensive treatment processes ensuring the safe disposal of domestic wastes, appeared.

Cyprus of course, could not escape the global evolution and thus what said before hold true. So far, sewage was in its majority disposed of, untreated, in remote areas or in the case of coastal towns, discharged into the sea.

In the last few years though, it was realized that this would add to the spoiling of the fragile ecosystem as well as featuring consequent, unfavourable effects, referring to agriculture, fishery, tourism and numerous interrelated fields, causing severe impacts on their development. For these reasons, some wastewater treatment plants were created.

Especially for Cyprus, with the current water problem, except from the protection of the environment, wastewater treatment can seriously contribute in saving water, since

vi

part of the treated effluent may be used for irrigation purposes.

This project deals with wastewater in general (qualities and problems arising from disposal) and with methods of treating wastewater. Methods and units of conventional treatment are described, but great emphasis is given on the Facultative Lagoon method, a natural means of treatment and that because this was deemed to be a feasible solution for Cyprus, judging from the prevailing conditions (climatic and others), explained in a later stage of this work.

The major objective of the project is the design of a Facultative Lagoon for a specific site in Cyprus, to treat domestic, or predominantly domestic, wastewater, with an effluent produced, satisfying the quality standards for irrigation purposes or, at least, for safe disposal, with no adverse consequences.