EVALUATION OF GEAR MANUFACTURE BY GENERATION METHODS

Project Report Submitted by

KONTOPYRGOU MINAS

student of Mechanical Engineering Course to satisfy all the conditions for the award of Diploma of Technician Engineer in Mechanical Engineering of the Higher Technical Institute Nicosia Cyprus

Project Supervisor: Mr. V. Messaritis Lecturer, Mechanical Engineering Department

Type of Project: Individual

June 1991

SUMMARY

This project has been divided into five chapters.

Chapter one deals basically with an introduction on gears. It describes the four basic types of gears i.e. spur, helical bevel and worm gears. The three groups that gear are classified and also the involute shape of a tooth is explained. Then the various design parameters that are use in the gears are explained.

Chapter two, is referring about the two important generating methods i.e. Shaping and Hobbing. Each method is describe separately and in each method is describe the principles of operations, the various types of cutters and their advantages and disadvantages.

Chapter three, deals with the various manufacturing method of gears i.e. milling, broaching, planning, hobbing, shaping. Also it is referring on the various finishing process, (burnishing, shaving, grinding, lapping and honning, and the various heat treatments, carburizing, nitriding, flame hardening, induction hardening.

At last, the various materials which are use for manufacturing of gear are referring.

Chapter four, is about the manufacturing of gears on the two machines (shaping and hobbing) and the accuracy test on the two manufactured gears. These tests were carried out at H.T.I. Metrology Laboratory.

At last, chapter five is referring for two experiments One for manufacturing a spur gear on a shaping machine, and the other for the manufacturing a helical gear on a hobbing machine. Sample calculations are given, and instructions for the setting up of the machines.

<u>CONTENTS</u>

Acknowledgements

Summary

CHAPTER 1.

GENERAL ABOUT GEARS:

<u>Pages</u>

.1.	Introduction	1
.2.	Tooth shape	1
.2.2.	Advantages of involute tooth	2
1.2.2.	Drawing an involute curve	2
L.3.	Gear Classification	5
.4.	Type of gears	8
L.5.	Spur gear	8
L.6.	Helical gear	10
L.6.1.	Helix angle	11
L.6.2.	Hand of helix	12
L.7.	Bevel gears	14
L.7.1.	Use of bevel gears	14
L.8.	Worm gearing	19
L.8.1.	Use of worm gears	19
L.9.	Design Parameters	21
L.9.1.	Elements and standard	
	relationship on a spur gear	21
L.9.2.	Helical gears	26
L.9.3.	Bevel gears with straight	
	teeth	27
L.9.4.	Worm gears	34
	teeth	

CHARTER 2.

METHOD OF MANUFACTURE GEARS BY SHAPING AND HOBBING METHODS.

2.1.	Gear manufacturing	ē.	37
2.1.1.	Forming		37
2.1.1.	Generating		39
2.2.	Shaping Process		39
2.2.1.	Principle of operation		40
2.2.2.	Types of shaping machines		44
2.2.3.	Advantages, disadvantages,		
	limitations		45
2.3.	Gear Hobbing		48
2.3.1.	Principle of operation		48
2.3.2.	Type of cutters		52
2.3.3.	Types of machines		55
2.3.4.	Advantage, disadvantages,		
	limitations		55

CHARTER 3

MANUFACTURING PROCESS

3.1.	Introduction	58
3.2.	Casting methods	58
3.3.	Manufacturing by machining	59
3.4.1.	Forming methods	61
3.4.1.	Milling machine method	61
3.4.2.	Broaching	64
3.5.	Generating methods	67
3.5.1.	Gear planning	67
3.5.2.	Hobbing	68
3.5.3.	Shaping	69
3.6.	Finishing Process	70
3.6.1.	Need for high finishing	70
3.6.2.	Methods available	71
3.6.2.1.	Burnishing	72
3.6.2.2.	Sharing	72

3.6.2.3.	Grinding	73
3.6.2.4.		75
3.6.2.4.1	Lapping materials	76
3.6.2.4.2	Lapping compounds	76
3.6.2.5.	Honning	76
3.7.	Gear materials	77
3.7.1.	Ferrous materials	78
3.7.2.	Non-Ferrous materials	82
3.7.3.	Non-metallic materials	84
3.8.	Heat treatment	85
3.8.1.	Carburizing	86
3.8.2.	Nitriding	87
3.8.3.	Induction hardening	88
3.8.4.	Flame hardening	89

CHAPTER 4.

GEAR CUTTING AND ACCURACY TESTS

4.0.	Gear shaping	91
4.1.	Specification of the shaping	
	machine	91
4.2.	Calculations for cutting of a spur	
	gear	92
4.2.1.	Calculations for preparation of the	
	blank	92
4.3.	Selection of cutter	94
4.4.	Determination of indexing quadrant	
	gears	95
4.5.	Determination of feed quadrant	
	gears	98
4.6.	Gear hobbing	99
4.7.	Specification of the hobbing	
	machine	99
4.8.	Calculations for cutting of a helica	1
	gear	100
4.8.1.	Calculations for the preparation of	
	the blank	100
4.9.	Selection of feed for the hobber	101

4.10.	Selection of the cutting speed of the hobber	105
4.11.	Determination of indexing quadrant	200
	gears	107
4.12.	Determination of differential	
	quadrant gears	109
4.13.	Setting the hobber angle	110
4.14.	Inspection	111
4.14.1.	Need for inspection	111
4.15.	Inspection on the spur gears	112
4.15.1.	Accuracy of tooth thickness	112
4.15.2.	Accuracy of outside and root	
	diameters	113
4.15.3.	Accuracy of tooth height	114
4.15.4.	Accuracy of the central hole of the	
	blank	115
4.16.	Inspection on the helical gear	117
4.16.1.	Accuracy of outside diameter	117
4.16.2.	Accuracy of tooth thickness	118
4.16.3.	Accuracy of tooth height	119

CHAPTER 5.

6

EXPERIMENTS FOR CUTTING OF GEARS.

5.1.	Manufacture of a gear on a	
	gear shaping machine tool	121
5.2.	Manufacture of a gear on a	
	gear hobbing machine tool	135

APPENDICES