DESIGN OF A PASSENGER LIFT OF A

MULTI - STOREY BUILDING

BY

THEODOROU ARESTIS

Project Report Submitted to the Department of Mechanincal Engineering of the Higher Technical Institute Nicosia, Cyprus in partial fulfilment of the requirements for the diploma of

> TECHNICIAN ENGINNER IN MECHANICAL ENGINEERING

May	1990
HIGHER	PROJECT NO.
TTCHNICAL	1719
INSTITUTE	1

SUMMARY

The objective of this project is to design a passenger lift, which lift should be of a capacity of 6 persons, speed of 1m/sec and is to be used for a multi-storey building.

Also, to present design calculations, to make separate detail drawings to a large scale for small components and to present manufactures catalogues and selection procedures for the machine components to be used to meet the terms and conditions specified above.

The whole project has been divided into 9 chapters.

Chapter 1, deals with the car control system, the different types of drive and some general notes for the doors.

Chapter 2, deals with the traffic analysis and some calculations are made in order to find the round trip time of the lift.

Chapter 3, deals with the design of the hoist with some relevant calculations in estimating the diameter and the tensile strength of the wire rope.

In Chapter 4, a description and the importance of the counterweight is made. Also the design of the counterweight too.

Chapter 5, deals with the selection of guides and the evaluation of forces and stresses on guide rails during normal and safety gear operation. Then the design of the fishplate and the guide's brackets are taken place.

Chapter 6, deals with the power transmition, with the relevant calculations in designing the sheave, diverting pulley, the staff securing it and keys and keyways.

Chapter 7, deals with the safety features that someone must have in mind in a case of being trapped in the car. Also, the selection and design of spring buffer was taken place.

Suitable instructions and maintenance procedures are included in chapter 8.

Finally, the cost analysis of this lift is taken place.

 $(f_{1}, \dots, f_{n}) \in f_{n}$

CONTENTS

<u>Paqe</u>

ACKNOWLEDGEMENT

SUMMARY

INTRODUCTION

CHAPTER 1	CAR CONTROL SYSTEM	
1.1	Types of drive	1
1.1.1	Drum Drives	1
1.1.2	Traction drive	2
1.1.3	Hydraulic Drive	3
1.2	Automatic collective control	4
1.3	Doors	7
1.3.1	Types of doors	7
1.3.2	General	8
1.3.3	Safety features	10
CHAPTER 2	TRAFFIC ANALYSIS	
2.1	The elevator trip	12
2.2	Calculation of lift	
	performance	12
2.2.1	Door operating time	14
2.2.2	Passenger transfer time	15
2.2.3	Round trip time	15
CHAPTER 3	DESIGN OF THE HOIST	م محمد الم
3.1	Selection of the wire rope	16
3.2	Determination of the	
	diameter of the wire rope	17
3.3	Estimation of nominal	
4	tensile strength on	
	the wire rope	19

<u>Page</u>

		Page
CHAPTER 4	COUNTERWEIGHT	
4.1	General	22
4.2	Total weight of	
	counterweight	23
4.3	Design of the frame	25
4.3.1	Design of the bolts of	
	the frame	27
4.3.2	Estimate of bolt diameter	27
	ś	
CHAPTER 5	GUIDES	
5.1	General	29
5.2	Symbol and units	30
5.3	Selection of guides	32
5.4	Evaluation of force and	
	stresses on guide rails	
	during normal operation	33
5.5	Evaluation of forces and	
	stresses on guide rails	
	during safety gear	
	operation	35
5.6	Selection of a fishplate	38
5.7	Fixation of guides	39
5.8	Design of bracket A	40
5.9	Design of bracket B	44
CHAPTER 6	POWER TRANSMITION	
6.1	Selection of the engine	48
6.2	Worm gearing	49
6.3	Design of the sheave	51
6.3.1	Estimation of the diameter	
	of the sheave	51
6.3.2	Keys and Keyways	53
6.4	Design of the diverting	
	pulley	57
6.4.1	Shape of groove of	
	diverting pulley	58

6.4.2	Determination of coefficient	
	of friction between rope	
	and sheave	60
6.4.3	Design of shaft securing	
	diverting pulley	63
6.4.4	Estimation of the diameter	
	of the shaft	64
6.4.5	Design of key for diverting	
	pulley and shaft	67
CHAPTER 7	SAFETY FEATURES	
7.1	Terminal stopping and final	
	limit switches	71
7.2	Top and bottom clearance	
	and runbys	73
7.3	Design of spring buffer	
	for the cars	74
7.3.1	Selection of the spring	
	buffer	74
7.3.2	Estimation of average	
	reaction force exerted by	
	a buffer on its support	78
7.4	Safety gear	79
7.5	Ventilation of machine	
	room	79
7.6	Design of the base	80
CHAPTER 8	MAINTENANCE AND TESTING	,
8.1	Inspections made in the	
	machine room	84
8.2	Inspections made form the	
<i>i</i>	landings	90
8.3	Inspections made from the	
	inside the car	90
8.4	Inspections made from the	
	top of the car	91

8.5	Inspections made from the pit	93
<u>CHAPTER 9</u>	COST ANALYSIS	95
CONCLUSIONS		96
APPENDICES	ś	
DRAWING		