HIGHER TECHNICAL INSTITUTE

CIVIL ENGINEERING COURSE

DIPLOMA PROJECT

FORMWORK TO REINFORCED CONCRETE STRUCTURES

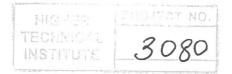
C/916

GEORGIOU ANDREAS

JUNE 2000

HIGHER TECHNICAL INSTITUTE NICOSIA CYPRUS

CIVIL ENGINEERING COURSE DIPLOMA PROJECT


FORMWORK TO REINFORCED CONCRETE STRUCTURES

1

GEORGIOU ANDREAS

C / 916

JUNE 2000

ACKNOWLEDGMENTS

I am variously indebted to the following individual gentlemen, for information and assistance in the preparation of the diploma project:

> Mr. Tsionis George, lecturer in Civil Engineering in H.T.I. Mr. Anastasiou Stelios, graduate of H.T.I., Civil Engineer My father Mr. Georgiou Dimitris, subcontractor formworker

I also like to thank my sister Marina Georgiou, Architect, in information and designs of the project.

CONTENTS

1.0 INTRODUCTION

2.0

1.1 Safety of formwork	1
1.2 Economy of formwork	1
1.3 Care of forms	1
1.4 Allowable unit stresses in material used for formwork	1-2
ECONOMY OF FORMWORK	
2.1 Suggestions for design	3_1

	2.1	Suggestions for design	3-4
	2.2	Economy of formwork and sizes of concrete columns	4-5
	2.3	Beam and column intersections	5
	2.4	Economy in formwork and sizes of concrete beams	5
	2.5	Economy in making erecting and stripping forms	5
	2.6	Removal of forms	6-7
£.	2.7	Economy in formwork and overall economy	7

3.0	PRESSURE	OF	CONCRETE	ON	FORMWORK	
	3.1 Behavio	rofo	concrete			

3.1 Behavior of concrete	8
3.2 Weight of concrete	8
3.3 Lateral pressure of concrete on formwork	8-9
3.4 Concrete loads on vertical forms	9-12
3.5 Concrete loads on horizontal forms	12-13
3.6 Vertical and material loads on forms	13-17

4.0 PROPERTIES OF FORM MATERIALS AND COMPONENTS

4.1 Introduction	18-20
4.2 Framing materials	20-23
4.3 Formface materials	23-29
4.4 Release agents	29
4.5 Common types of release agents	29-30
4.6 Formwork fixings	30-31
4.7 Types of fixings	31-34
5.0 SHORES AND SCAFFOLDING	
5.1 Shores-props	34-35
5.2 Tubular steel scaffolding frames	35-39
6.0 GROUND FORMS AND FORMS FOR FOOTINGS	
6.1 Edge forms	40-41
6.2 Keyed edge forms	41-42
6.3 Dowelled joints in slabs	42-43
6.4 Continuity of reinforcement	43-44
6.5 Waterstops in edged forms	44
6.6 Pegging edge forms on hard ground	44-45
6.7 Cantilever supports to edge forms	45-47

6.8 Isolated rectangular footings 6.9 Kickers	47-50 50-54
7.0 WALL FORMS	55.50
7.1 Wall form loading	55-58
7.2 Double faced forms	58-61
7.3 Selection of wall formwork type	62 63-64
7.4 Deflection of framing members	64-71
7.5 Wall tying systems	72-75
7.6 Typical wall formwork and erection 7.7 Bracing wall forms	75-76
7.8 Plywood fixing to framing	76-105
7.9 Proprietary wall form system and components	105-114
7.10 Curved wall formwork	114-120
7.11 Single faced wall forms	120-125
8.0 COLUMN FORMS	
8.1 Rectangular columns	129-142
8.2 Circular columns	143-146
8.3 General details	146-161
8.4 Special column shapes	161-164
9.0 BEAM FORMS	
9.1General principles of stripping	167-168
9.2 Construction details	168-186
9.3 Multiple tee beams	186-191
10.0 SLAB AND SOFFIT FORMS	
10.1 Conventional soffit forms	194
10.2 Plywood	194-195
10.3 Soffit form framing	196-206
10.4 Support systems	206-221
10.5 General construction details	221-235
10.5 Formwork stripping	236-240
10.6 Aluminium beams	240
10.7 Floor centers	240-246
10.8 Quick strip systems	247-249
11.0 STAIR FORMS	
11.1 Precast stairways	253-255
12.0 PERMANENT FORMWORK	
12.1 Materials for permanent forms	256-265
13.0 FORMWORK DESIGN	
13.1 Notion of critical length	266-273
13.2 Soffit support system	273-281

1. INTRODUCTION

1.1 Safety of formwork

The failure of formwork is a major concern of all parties involved in a construction project, the owner, the designer, and the contractor. It's the responsibility of each designer of formwork to ensure that the forms are designed adequately. This requires a careful analysis of the job conditions that exist at each jobsite, a determination of the loads that will be applied to the formwork, and the selection and arrangement of suitable forming materials that have adequate strength to sustain the loads.

It's the responsibility of the workers at the jobsite to fabricate and erect the formwork in accordance with the design. A careful check of the design and inspection of the work during construction are necessary to ensure the safety and reliability of the formwork.

Safety is everyone's responsibility and all parties must work together as a team with safety as a major consideration.

1.2 Economy of formwork

Economy should be considered when planning the formwork for a concrete structure. Economy involves many factors, including the cost of materials, the cost of labor in making, erecting, and removing the forms and the cost of equipment required to handle the forms.

Economy includes also the number of reuses of the form materials, the possible salvage value of the forms or use elsewhere, and the cost of finishing concrete surfaces after the forms are removed. A high initial cost of materials, such as steel forms, may be good economy because of the greater number of uses that can be obtained with steel forms.

1.3 Care of forms

Forms are made of materials which are subject to considerable damage through misuse and mishandling. Wood forms should be removed carefully then cleaned, oiled, and stored under conditions that will prevent distortion and damage.

1.4 Allowable Unit Stresses in Material Used for Formwork

In order to attain the maximum possible economy in formwork, it is desirable to use the highest practical unit stresses in designing forms. A knowledge of the behavior of the pressures and loads that act on forms is necessary in determining the allowable unit stresses.

When concrete is first placed, it exerts its maximum pressure or weight on the restraining or supporting forms. However, within a short time sometimes less than 2

hours, the pressure on wall and column forms will reach a maximum value, then it will decrease to zero. Thus, the forms are subjected to maximum stresses for relatively short periods of time.

As far as beams slabs and girders concerned the concrete begins to set and to bond with reinforcing steel within a few hours after is placed so as to support it self. Although the forms are usually left in place for several days, the magnitudes of the unit stresses in the forms will gradually decrease as the concrete gain strength. Thus the maximum unit stresses in the formwork are temporary and of shorter duration than the time the forms are left in place.

1