HIGHESCHERT PLANTER HERE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN AND CONSTRUCTION OF AN EXPERIMENTAL UNIT FOR BALANCING OF DUCTED AIR SYSTEMS

M/987

BY: NICOLAS A. KOUNTOURIS

JUNE 2004

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

Design and Construction of an Experimental Unit for Balancing of Ducted Air Systems

M/987

In partial fulfilment of the requirements for the diploma of

TECHNICIAN ENGINEER

MECHANICAL ENGINEERING

By: Nicolas A. Kountouris

Summary

The purpose of this project is to present the theory around air flow in ducted air systems, and also to elucidate how this theory has been applied for the design of an experimental air ducting unit for air pressure balancing.

A balancing procedure is highly important for ensuring that each branch of the duct system receives the correct (designed) amount of air volume flow rate.

The project is organized in 3 main parts which reflect the approach followed for the completion of this project. The first part is dealing with the presentation and explanation of the theory, which will be put to practice later on. The second part is devoted in the preparation and design of the construction of the experimental unit while the third part denotes the preparation of laboratory instruction sheets for experiments to be carried out with the air ducting unit.

The main conclusions from this project is that although balancing of ducts is a part of a constructional engineer in every day's life it is not appreciated as much as it should. And believe it or not things may not be as they look like to be from the first glance. This is the reason why an experimental simulating unit is a must for the training of a proper engineer!

Acknowledgements

ACKNOWLEDGEMENTS

I first selected this project because it seemed like an interest project to deal with. Now that I have finished it I still believe the same thing but even stronger than before! Through this project I learned more that I was hoping for.

The field of air duct systems, in Cyprus more specifically, has not been used before in these levels as it is being used today. People realised the significance of a correct and complete A/C system and the increase it can add up to in human productivity. It has endless potentials for improvement and there are people that really know their way around the subject and can really contribute in the field.

Some of them that helped me a lot in my attempt for this project are my friend Tryfonas Xristodoulou and my Supervisor Theodoros Symeou. I thank both very much for their valuable guidance through every step for this project.

My appreciation also extends to my father Mr. Artemo Kountouri for his help in assembling the experimental unit.

List of Contents

List of Contents

	Pages
Title Page	
Summary	iii
Acknowledgements	iv
List of contents	V
List of figures / tables	ix
Introduction	xiv .

Part One:

Theory of Air Flow in Ducted Air Systems

Chapter One: BASIC DEFINITIONS	2
1.1PRESSURE	3
1.2 VISCOSITY	6
1.3 PATHLINES, STREAKLINES, AND STREAMLINES	9
Chapter Two: FLUIDS IN MOTION	11
2.1 INTRODUCTION	12
2.2 CLASSIFICATION OF FLOW	13
2.3 REYNOLDS NUMBER	16
2.4 THE BERNOULLI EQUATION	17
Chapter Three: PRINCIPLES OF AIR FLOW	21

3.1 PRINCIPLES OF AIR FLOW	22
3.2 TERMS AND DEFINITIONS	23
<u>Chapter Four</u> : FAN LAWS	29
4.1 INTRODUCTION TO FAN LAWS	30
4.2 CONCLUSIONS	33
Chapter Five: FAN TYPES	34
5.1 PROPELLER FANS	35
5.2 AXIAL FLOW FANS	39
5.3 CENTRIFUGAL FANS	45
5.4 MIXED FLOW FANS	51
Chapter Six: FAN TOTAL PRESSURE LOSSES	52
Chapter Seven: PARALLEL AND SERIES	
CONNECTION OF FANS	55
7.1 PRALLEL CONNECTION	56
7.2 IN SERIES CONNECTION	57
Chapter Eight: DUCT SIZING	59
8.1 PRESSURE DROP IN STRAIGHT DUCTS	60
8.2 PRESSURE DROP IN DUCT FITTINGS	64
8.3 DESIGN OF DUCT SYSTEMS	65

Chapter Nine: SELLECTION OF FANS	*	68
Chapter Ten: LOCATION AND MAINTENANCE OF FAN	S	71
Chapter Eleven: NOISE AND VIBRATION		73

Part Two:

Design and balancing of the experimental unit

Chapter Twelve: DESIGNING THE UNIT	76
12.1 NEEDS ANALYSIS PHASE	77
12.2 CREATIVITY PHASE	77
12.3 DECISION MAKING	85
12.4 OPTIMISATION PHASE - DUCT SIZING	85
12.5 FINAL COMPLETED DESIGN	. 94
12.6 COST ESTIMATE	105
Chapter Thirteen: BALANCING OF THE UNIT	107
13.1 INTRODUCTION	108
13.2 THEORY OF BALANCING	108
13.4 PRESSURE DROP ADDITION METHOD	110
13.3 PROPORTIONAL RATIO METHOD	122

Part Three:

Laboratory Instruction Sheets for Experiments to be Carried out with the Air Ducting Unit

Part Three

135

<u>Conclusion</u>

<u>Appendices</u>

1 USING THE TABLE TO CONVERT ROUND

TO RECTANGULAR DUCT

2 DIMENSIONAL ANALYSIS

4 FITTINGS LOSS COEFFICIENTS

3 CYPRUS MARKET RESEARCH

Bibliography

Detailed Drawings

List of Figures / Tables

<u>Pages</u>

Part One:

Theory of Air Flow in Ducted Air Systems

<u>Chapter One</u> : BASIC DEFINITIONS	
Fig. 1.1 Definition of pressure	3
Fig. 1.2 Gage and absolute pressure	4
Fig. 1.3 Manometers	5
Fig. 1.4 Relative movement of two fluid particles	
in the presence of shear stresses	6
Fig. 1.5 Fluid being sheared between two cylinders	7
Fig. 1.6 Velocity distribution	7
Fig. 1.7 Viscosity Vs Temperature	8
Fig. 1.8 Pathlines underneath a wave of water	9
Fig. 1.9 Streaklines	10
Fig. 1.10 Streamline in a flow field	10
Chapter Two: FLUIDS IN MOTION	
Fig. 2.1 Developed flow	13
	15
Fig. 2.2 Uniform velocity profiles	14
Fig. 2.3 Flow around air foil	15
Fig. 2.4 Velocity as a function of time in a) Laminar flow,	
b) Turbulent flow and c) Intermittent flow	16

Fig. 2.5 Pressure probes	19
Fig. 2.6 Internal inviscid flow through a contraction	20
Chapter Three: PRINCIPLES OF AIR FLOW	
Fig. 3.1 Total, Static and velocity pressure	23
Fig. 3.2 Total pressure measurement (a)	25
Fig. 3.3 Total pressure measurement (b)	26
Fig. 3.4 Fan static pressure	26
Fig. 3.5 Air Power	27
<u>Chapter Five</u> : FAN TYPES	
Fig. 5.1 Propeller fan	35
Fig. 5.2 Characteristics curve for a propeller fan	36
Fig. 5.3 Placement of a propeller fan	37
Fig. 5.4 Tendency of air to re-enter the	
fan on discharge side	38
Fig. 5.5 Axial flow fan	39
Fig. 5.6 Cross section of an aerofoil blade	40
Fig. 5.7 Air leaving rotational component	41
Fig. 5.8 Guide vanes position	41
Fig. 5.9 Axial flow fan performance characteristics	42
Fig. 5.10 Axial flow fan velocity profile establishment	43
Fig. 5.11 Effect of the pitch angle	44
Fig. 5.12 Centrifugal fan	45
Fig. 5.13 Types of centrifugal fans	46
Fig. 5.14 Forward curved centrifugal fan performance	
Characteristics	47

ix

Fig. 5.15 Backward curved centrifugal	
fan performance characteristics	48
Fig. 5.16 Radial centrifugal fan	
performance characteristics	49
Fig. 5.17 Centrifugal flow fan velocity profile	
establishment	50
Fig. 5.18 Classification of fans types	51
Chapter Six: FAN TOTAL PRESSURE LOSSES	
Fig. 6.1 Effect of actual system resistance	
being greater than estimated	54
Chapter Seven: PARALLEL AND SERIES CONNECTION OF FANS	
Fig. 7.1 Eans connected in parallel and in series	56
Fig. 7.2 Characteristic curve of two	00
fans connected in parallel	57
Fig. 7.3 Characteristic curve of two	
fans connected in series	58
<u>Chapter Eight</u> : DUCT SIZING	
Fig. 8.1 Pressure loss Vs Volume flow rate graph	61
Fig. 8.2 Table of conversion from	
round to rectangular duct	63

Part Two:

Design and balancing of the experimental unit

<u>C</u>	hapter Twelve: DESIGNING THE UNIT	
	Table 12.1 Brain storming ideas	78
	Fig. 12.1 Idea No 1	80
	Fig. 12.2 Idea No 2	81
	Fig. 12.3 Idea No 3	82
	Fig. 12.4 Idea No 4	83
	Fig. 12.5 Preliminary design unit parts	88
	Table 12.2 Duct Sizing	89
	Fig. 12.6 3-Dimentional drawing of the unit	91 -
	Fig. 12.7 Numbering of the final parts	93
	Fig. 12.8 1 st Run Parts	95
	Table 12.3a Pressure Drop for 1st Run	96
	Fig. 12.9 2 nd Run Parts	97
	Table 12.3b Pressure Drop for 2nd Run	98
	Fig. 12.10 3 rd Run Parts	99
	Table 12.3c Pressure Drop for 3rd Run	100
	Fig. 12.11 4 th Run Parts	101
	Table 12.3d Pressure Drop for 4th Run	102
	Table 12.4 Corrected flows	104
	Table 12.5 Cost Estimation	106

Chapter Thirteen: BALANCING THE UNIT	
Table 13.1 Pressure Drop for Different Angles	
and Velocities of the Dumper when D/Do=0.8	112
Table 13.2 Pressure Drop for Different Angles	
and Velocities of the Dumper when D/Do=0.9	113
Graph 13.1 ∆P Vs ⊖ when V=2.5 m/s	114
Graph 13.2 ΔP Vs Θ when V=3 m/s	115
Graph 13.3 ΔP Vs Θ when V=3.5 m/s	116
Graph 13.4 ΔP Vs Θ when V=4 m/s	117
Graph 13.5 ∆P Vs ⊖ when V=4.5 m/s	118
Graph 13.6 ΔP Vs Θ when V=5 m/s	119
Graph 13.7 ΔP Vs Θ when V=5.5 m/s	120
Graph 13.8 ∆P Vs ⊖ when V=6 m/s	121
Table 13.3 Pressure drop calculation	
for the 1st Branch run	126
Table 13.4 Pressure drop calculation	
for the 2nd Branch run	127
Table 13.5 Pressure drop calculation	
for the 3rd Branch run	128
Table 13.6 Pressure drop calculation	
for the 4th Branch run	129
Table 13.7 Measurements and calculations	
for the ΔP addition method	130

INTRODUCTION

Ulterior goal of this project is the design and construction of an air duct unit for experiments on air pressure balancing.

I will try to present and explain the theory behind the flow of air in an air ducting systems and finally reach to the best way of constructing the unit. This is not an easy task due to the difficult-tounderstand phenomena contained in that theory. The project assumes that a certain level of knowledge of mathematical and engineering curricula is possessed by the reader in order to understand the equations and laws used. Their proof is not considered to be part or purpose of this project. The reader is encouraged to study further the fluid mechanics theory, by looking into the given references.

The heating and cooling system is supposed to create a comfortable artificial environment for over 50 percent of the year. This is the reason that air conditioning, though in the past was considered luxury, has become nowadays a necessity! This need for human comfort led mechanical engineers in the development of various ways to achieve the functions of air conditioning, which are:

- 1. Temperature of the surrounding air
- 2. Humidity of the air
- 3. Ventilation and
- 4. Filtering of air in space

Air conditioning systems developed can be separated into three categories:

1. All-air systems

2. Air and water systems

3. All water systems

From the above one can see that air circulation for 1st and 2nd type is necessary. But for an air conditioning system to be "complete" all the four above functions should be satisfied, including the ventilation requirements.

Ventilation, although sometimes underestimated, is very important for human comfort because of the reasons listed below:

- Supply of O2 for breathing
- Remove products of respiration
- Remove smells, odours, smokes
- Remove other dangerous substances produced by industrial processes (welding etc)
- To obtain a cooling feeling

Therefore even for the 3rd type of air conditioning system ducting of air is a must!

The main disadvantage of air ducting systems is that when a fan is serving several duct branches, it is necessary to carry out a balancing exercise to ensure that each branch receives the correct (design) flow.

Since adjusting a damper on one branch will also affect the flows in the other branches, it is clear that the balancing must be carried out in a systematic manner if it is to be accomplished in a reasonably short period of time.

The method that will be described in the next chapters is called the proportional ratio method, and in essence, it is the same method that is used for balancing water systems.

Ventilation and exhaust system duct sizing has quite a few more wrinkles than one might think from the first glance. It is considered in general an easy task and not a very important one. But in the contrary it is an important parameter and not easy, when treated tactless.

In fact we could say that it's a vital one for the proper functionality of the system and therefore the final goal, the human comfort.

The following chapters also contain the data from which the selection of the appropriate materials and equipment, for the construction of the experimental unit, was made.