BUGBER TECHNICAL INSTITUTE

ELECTRICAL ENCIPERRIC DEPARTMENT

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL
INSTALLATION OF A MULTISTOREY BUILDING

E/11.79

MICHAEL TERZIS

JUNE 1999

DESIGN OF THE ELECTRICAL

INSTALLATION OF A MULTISTOREY BUILDING

BY

MICHAEL TERZIS

E/1179

PROJECT REPORT

SUBMITTED TO

THE DEPARTMENT OF ELECTRICAL ENGINEERING

OF THE HIGHER TECHNICAL INSTITUTE

OF THE HIGHER TECHNICAL INSTITUTE

NICOSIA - CYPRUS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DIPLOMA OF

TECHNICIAN ENGINEER
IN ELECTRICAL ENGINEERING

JUNE 1999

CONTENTS

CHAPTER 1	<u>PAGE</u>
ILLUMINATION DESIGN	
1.1 Introduction	1
1.2 Definitions and units	1,2
1.3 Advantages of good illumination	3
1.4 Methods of illumination calculations	3
1.5 Calculation procedure	3,4
1.6 Examples of illumination	4,5,6
1.7 Spacing of fittings	7
Table of results	7-10
CHAPTER 2	
ILLUMINATION DESIGN	
2.1 Devices used for the lighting installation	11
2.2 Selection of MCB rating	11,12
2.3 Calculations of the cross sectional area of the live conductor	rs 12
2.4 Voltage drop limitations	12,13
2.5 Shock protection and c.p.c sizing	13,14
2.6 Thermal Constrain	14
2.7 Conduit diameter	14,15
Table of results	15
CHAPTER 3	
POWER DESIGN	
3.1 Devices used in the installation	16
3.2 Example of socket outlets design	
3.2.1 a .Calculation of live conductor size	17
3.2.1 b .Voltage drop limitations	17,18
3.2.2 Shock protection calculation	18,19
3.2.3 Thermal constrains calculation	19,20

3.2.4 Conduit diameter	20
Table of results	21
CHAPTER 4	
FIXED APPLIANCES	
4.1 Cooker unit	22
4.1.1 Overcurrent protection	22,23
4.1.2 Voltage drop limitations	23
4.1.3 Check for shock protection	23
4.1.4 Check for thermal constrain	24
4.1.5 Energy let through	24
4.1.6 Conduit diameter	24,25
Table of results	25
4.2 Water heater	
4.2.1 Overcurrent protection	26
4.2.2 Voltage drop limitations	26
4.2.3 Check for shock protection	27
4.2.4 Check for thermal constrains	27
4.2.5 Energy let through	28
4.2.6 Conduit diameter	28
Table of results	29
4.3 Lift motor	
4.3.1 Calculations of phase conductor	30
4.3.2 Voltage drop limitations	30,31
4.3.3 Shock protection	31
4.3.4 Energy let through	31,32
4.3.5 Conduit diameter	32
Table of results	32
4.4 Supply of water pump	
4.4.1 Calculations of the size of the live conductor	33

4.4.2 Check for voltage drop limitations	33
4.4.3 Check for shock protection	33,34
4.4.4 Check for thermal constrains	34
4.4.5 Energy let through	34,35
4.4.6 Conduit diameter	35
Table of results	35
4.5 Air conditioning	
4.5.1 Calculation of the sizes of the live conductors	36
4.5.2 Check for Voltage drop limitations	36
4.5.3 Check for Shock protection	36,37
4.5.4 Check for thermal constrains	37
4.5.5 Energy let through	37,38
4.5.6 Conduit diameter	38
Table of results	39
S.I. Imp	
CHAPTER 5	
DISTRIBUTION BOARDS	
5.1 Diversity applications	40
5.1.1 Overcurrent protection	40
5.1.2 Voltage drop limitations	40,41
5.1.3 Shock protection calculations	41
5.1.4 Check for thermal constrains	41,42
5.1.5 Conduit size	42
Tables for all the distribution board of the installation	42-48
CHAPTER 6	
FAULT LEVEL CALCULATIONS	
6.1 Importance of the fault level calculations	49
6.2 Example of fault level calculations	49,50
6.3 Reason that we use RCCB	50

CHAPTER 7

INSPECTION AND TESTING	
7.1 Inspection	51
7.2 Testing	51
7.2.1 Continuity of ring final circuit conductors	51
7.2.2 Continuity of protective of protective conductors	52
7.2.3 Insulation resistance	52
7.2.4 Polarity test	52
7.2.5 Earth fault loop impedance	52
7.2.6 Operation of residual current protective devices	52
7.3 Completion Cerificates and inspection report forms	
CHAPTER 8	
EARTHING	
8.1 Importance of earthing	54
8.2 TT system of supply	54
8.3 Type of protective conductors	54
8.4 Calculation of protective conductor	54,55
8.5 Places we use bonding	55
CHAPTER 9	
TELEPHONE INSTALLATION	
9.1 Introduction	56
9.2 Definitions and terms	56
9.3 Conduits and conduits sizes	56,57
9.3.1 Conduit diameter for access cable	57
9.3.2 Conduits between Distribution cases	57
9.4 Installation of the distribution case	57
9.5 Conduit and wiring schematic	58,59
Table for telephone installation	50

CHAPTER 10

COSTING

Material costing	60-63
Labor costing	63-63
Total cost	65

ACKNOWLEDGEMENTS

I would like to express my thanks to my project supervisor Mr Avraam Georgiou for his valuable quitance to carry out this design.

Also I would like the electrical engineers of A&P Paraskevaides that gave me many information such as specifications and technical data.

Introduction

The design of the electrical installation of the multistorey building is based in the 16^{th} edition of IEE regulations and the earthing system used is a TT system .

<u>CHAPTER 1:</u> It deals with the illumination work. The lumen method of design is used for the calculation of the number of luminaries to be installed in each room in the multistorey building.

CHAPTER 2: It deals with the lighting design of our building

<u>CHAPTER 3:</u> It deals with the socket load calculations . All the results can be seen in the table .

<u>CHAPTER 4:</u> It deals with the fixed appliances of our building .These fixed appliances are the cooker unit ,the water heater the lift motor which has a three phase motor, the water pump which has a single phase motor and the air conditioning that give us cool and hot air .

<u>CHAPTER 5:</u> This chapter contains all the distribution board of the building and also the balancing of the three phases.

CHAPTER 6: This chapter deals with the fault level calculations.

<u>CHAPTER 7:</u>This chapter deals with inspection and testing. We can see the methods of testing and inspection that must take place in order to have a safety electrical installation.

CHAPTER 8: This chapter deals with the basic rules of earthing.

<u>CHAPTER 9:</u> This chapter deals with the telephone installation. It contains wiring and conduit schematic.

<u>CHAPTER 10:</u> This chapter deals with the costing of all the materials and labor of the installation.

ABBREVIATIONS

Chartered Institute of Building Services C.I.B.S **Institute of Electrical Engineers** I.E.E **Distribution Board** D.B **Electricity Authority of Cyprus** E.A.C Cyprus Telecommunication Authority C.Y.T.A Miniature Circuit Breaker M.C.B **Circuit Protective Conductor** C.P.C Air Condition A/C Water Heater W/H Voltage Drop V.D Lift Motor LM

General assumptions

■ Height of socket outlets above floor	$0.5 \mathbf{m}$
■ Height of distribution Board	1.7m
■ Height of control switches	1.5m
■ height of double pole switch for a/c	1.5m
■ Height of double pole switche for W/H	0.5m
■ Height of telephone sockets	0.5m