HOT WEATHER CONCRETING

Project Report Submitted by

STELLA KYTHREOTI

in part satisfaction of the award of Diploma of Technician Engineer in Civil Engineering of the Higher Technical Institute, Cyprus

Project Supervisor: K. Anastasiades

External Assessor:

Adamos Constantinides

Type of Project:

Individual

Group

. Х...

.....

2096

JUNE, 1993

SUMMARY

Concrete is the most versatile and widely used building material. It is used in dams, canals and aqueducts; in highways, pavements and sidewalks; and in buildings, bridges and other structures, both as a structural and as a decorative material.

Where concrete is not used as a primary structural material it may be used for fireproofing, waterproofing or soundproofing. Concrete also acts as a shield against damaging nuclear radiation.

Concrete is of such importance that almost every civil engineering structure uses it.

Due to the increase of the earth population and the needs of the people for housing the building industry has been expanded at such level that it has to work all the year round.

As already mentioned concrete is the basic material used but due to the various climatic conditions and difference in temperature among the various periods of the year, it has been necessary to establish various methods of concreting at high and low temperatures.

How could concrete behave in abnormal conditions and aspects to be consider in order to specify adequately the production, transportation, placement and concrete protection, during those conditions will be discussed in this project.

CONTENTS

	PAGE	
ACKNOWLEDGEMENTS		
CONTENTS	II	
LIST OF FIGURES	v	
LIST OF TABLES	VI	
LIST OF PLATES	VII	
SUMMARY	VIII	
INTRODUCTION	IX	

CHAPTER 1: HOT WEATHER CONCRETING

1.1.	INTRODUCTION	1
1.2.	HOT WEATHER	3
1.2.1.	Hot Weather Defined	3
1.2.2.	The Effects of Different Weather Conditions	3
1.2.2.1.	Weather in Cyprus	5
1.2.2.2.	Hot Weather's negative factors	5

<u>CHAPTER 2:</u> THE INFLUENCE OF HOT WEATHER ON CONCRETE PROPERTIES

2.1.	GENERAL	7
2.2.	HOT WEATHER EFFECTS	7
2.2.1.	Properties Affected	7
2.2.2.	Fresh Concrete	
2.2.2.1.	Temperature and Water Requirement of Concret	e 8
2.2.2.2.	Temperature and Stiffening of Concrete	8
2.2.2.3.	Hot Weather => Problems & Results	9
2.2.2.3.1.	Drying and Plastic Shrinkage	11
2.2.2.3.2.	Segregation	11
2.2.2.3.3.	Bleeding	13
2.2.3.	Hardened Concrete	13
2.2.3.1.	Temperature and Compressive strength of	
	Concrete	14
2.2.3.2.	Durability	16

3.1.	GENERAL	19
3.2.	CEMENT	19
3.2.1.	Fine Cements	20
3.2.2.	Sulphate Environments	20
3.2.3.	Blends	20
3.2.4.	Cement Temperature	21
3.3.	AGGREGATES	21
3.3.1.	Alkali-Silica Reaction	23
3.4.	WATER	29
3.4.1.	Introduction	29
3.4.1.1.	Chloride and Sulphate	30
3.4.1.2.	Sugar	31
3.4.1.3.	Algae	31
3.4.1.4.	Seawater	32
3.4.2.	Effect of water	32
3.4.2.1.	Effect of cooled mixing water	34
3.4.2.1.1.	Liquid Nitrogen	36
3.4.2.2.	Ice as part of the mixing water	37
3.5.	ADMIXTURES	38
3.5.1.	Introduction	38
3.5.2.	Air-entraining admixtures	39
3.5.3.	Water-reducing admixtures	40
3.5.4.	Retarding admixtures	40
3.5.5.	Accelerating admixtures	41
3.5.6.	Pozzolans	43
3.5.7.	Workability agents	44
3.5.7.1.	Superplasticizers	45
3.5.8.	Dampproofing and permeability-reducing a	agent46
3.5.9.	Bonding admixtures	46
3.5.10.	Grouting agents	47
3.5.11.	Gas-forming agents	47

4.1.	INTRODUCTION	49
4.2.	CONSTRUCTION JOINTS & COLD JOINTS	49
4.3.	BATCHING AND MIXING	50
4.4.	DELIVERY	53
4.5.	PLACEMENT AND COMPACTION	53
CHAPTER 5:	CURING OF CONCRETE	
5.1.	GENERAL	56
5.2.	CURING IN HOT WEATHER	57
5.2.1.	Wood forms	57
5.2.2.	Removal of forms	57
5.3.	METHODS OF CURING	58
5.3.1.	Ponding or Immersion	59
5.3.2.	Spraying or Fogging	60
5.3.3.	Wet Coverings	60
5.3.4.	Impervious Paper	62
5.3.5.	Plastic Sheets	64
5.3.6.	Membrane-forming Curing compounds	65
5.4.	TWO-STAGE CURING	67
<u>CHAPTER 6:</u>	RECOMMENDATIONS	
6.1.	GENERAL	68
6.2.	SUMMARY OF RECOMMENDATIONS	69
6.3.	DO'S AND DON'TS FOR CONCRETING IN HOT	

	WEATHER	71
6.3.1.	Do's	71
6.3.2.	Don'ts	72
6.4.	HOT WEATHER CONCRETING IN CYPRUS	72

APPENDIX I Admixtures which can be used in hot weather.73 APPENDIX II Extracts from various contracts. 88

97

REFERENCES