HIGHER TECHNICAL RETTLITE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

SIMULATION OF COMMUNICATION SYSTEMS USING MATLAB AND FPGAs

E 1418

CONSTANTINOU MARIOS

JUNE 2007

HIGHER	PROJECT NO	
TECHNICAL INSTITUTE	3712	

HIGHER TECHNICAL INSTITUDE

111 1

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

SIMULATION OF COMMUNICATION SYSTEMS USING MATLAB AND FPGAs

E1418

CONSTANTINOU MARIOS

JUNE 2007

SIMULATION OF COMMUNICATION SYSTEMS USING MATLAB AND FPGAs

By

Constantinou Marios

Project report submitted to the

Department of Electrical Engineering

Nicosia – Cyprus

in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

June 2007

ABSTRACT

Simulation of communications systems using MATLAB and FPGAs

by

Constantinou Marios

The main focus of this report is to demonstrate how MATLAB and FPGAs can be used in simulation and implementation of communications systems. Through several demonstrations the author will try to show some applications of MATLAB and FPGA in communication systems.

ACKNOWELEDGEMENTS

I would like to express my sincere appreciation to Mr D Lambrianides Lecturer at the HTI, for his guidance during the preparation of this report Dedicated to my friends and my family

CONTENTS

ABSTRACTI
ACKNOWELEDGEMENTS II
CONTENTSIV
LIST OF FIGURES
ABBREVIATIONSIX
1. INTRODUCTION TO MATLAB1
1.1 AIMS AND OBJECTIVES11.2 WHAT IS MATLAB?11.3 MATLAB ENVIRONMENT21.4 INTRODUCTION TO MATLAB EDITOR31.4.1 Starting the MATLAB editor31.4.2 MATLAB Editor41.5 SIMULINK51.5.1 What Is Simulink?51.5.2 Starting Simulink51.5.3 Creating an empty model61.5.4 Adding objects to the model61.5.5 Connecting blocks71.6 TOOLBOXES71.6.1 COMMUNICATIONS TOOLBOX81.6.3 SIGNAL PROCESSING TOOLBOX81.7 BLOCKSETS8
2. DIGITAL COMMUNICATION
2.1 CONSTELLATION DIAGRAM.92.2 EYE DIAGRAM102.3 DIGITAL MODULATION112.3.1 Phase-Shift Keying (PSK)132.3.1.1 Binary phase-shift keying (BPSK)132.3.1.2 Quadrature phase-shift keying (QPSK)142.3.2 Frequency-Shift keying (FSK)162.3.2.1 Minimum frequency-shift keying (MSK)162.3.2.2 Audio frequency-shift keying (AFSK)172.3.3 Amplitude-Shift Keying (OOK)172.3.4 Quadrature Amplitude Modulation (QAM)18
3. EYE DIAGRAM AND SCATTER PLOT FUNCTIONS USING MATLAB 19
3.1 PLOTTING OF A SIGNAL193.2 CREATE AN EYE DIAGRAM203.3 EYE DIAGRAM OF A REAL SIGNAL213.4 EYE DIAGRAM OF YY223.5 MULTIPLE SYMBOLS IN A TRACE23

1		6
3.7 SCATTER PLOT	8	. 25
3.8 IN PHASE VS QUADRATURE COMPONENT		. 26
3.9 SUMMARY		. 26
4. MSK MODULATION AND DEMODULATION MODEL USING S	IMULINK	. 27
		. 27
4.2 RONNING SIMULATION		. 30
4.2.2 Spectrum scope		. 30
4.2.3 Scatter plot		. 31
4.2.4 Eye diagram		. 31
4.3 ENHANCING THE MODEL		. 32
4.3.1 Creation of digital Lowpass filter using FDAtool		. 32
4.3.2 Addition of a delay block		. 32
4.3.3.1 SCOPE		. 34
4.3.3.2 SPECTRUM SCOPE		. 34
4.3.3.3 Scatter plot		. 35
4.4 OBSERVATIONS		. 36
4.5 CONCLUSION		. 36
5. INTRODUCTION TO FPGAS	<i>r</i>	. 37
5.1 AIMS AND OBJECTIVES		. 37
5.2 WHAT IS AN FPGA ?		. 37
5.3 FPGA APPLICATION AREAS		. 37
6 XII INX ISE 9.1	,	. 39
		30
6.1.1 Design entry		. 39
6.1.2 Synthesis		. 39
6.1.3 Implementation		. 39
6.1.5 Device configuration		. 39
6.2 ISE 9.1 ENVIRONMENT		. 40
6.2.1 Project Navigator Main Window		. 40
6.2.2 Using the Sources Window		. 40
6.2.4 Process Status		. 42
6.3 STARTING NEW PROJECT		. 43
7. CHOOSING OF FPGA		. 48
8. SCHEMATIC COMBINATIONAL LOGIC DESIGN		. 49
8.1 Assign Package Pins		. 50
8.2 GENERATE THE PROGRAMMING FILE TO FPGA		. 52
9. COUNTER DESIGN		. 57
OBJECTIVE OF THIS DEMONSTRATION IS TO CONSTRUCT 28-BIT BINARY	COUNTER	. 57
9.1 SCHEMATIC DIAGRAM		. 57
9.1.1 Counter		. 57
9.1.2 Fourbit		. 57

	· 1			
9.1.3 fsh				58
9.1.4 HEX2LED VHDL n	nodule			58
10.2 PINOUTS				60
HEX2LED MODULE CONVERTS	S 4BITS TO 7 SEGM	ENT OUTPUT		60
10.3 TESTING		••••••••••		60
10. FSK MODULATOR DES	IGN			61
10.1 SCHEMATIC DIAGRA	۹MS			61
10.1.1 FSK				61
10.1.2 mux				61
10.1.3 freqdiv				62
10.1.4 cnter	••••••	••••••	•••••	62
10.1.5 Lesting				62
10.2 PINOUTS		••••••		63
11.00K MODULATOR USIN	IG MATLAB SYS	STEM GENERAT	OR	64
11.1 INTRODUCTION TO	SYSTEM GENEF	RATOR		64
11.1.1 System Level Mo	deling with Syste	m Generator		64
11.1.2 The System Gene	erator Design Flor	w		65
11.2 OOK MODULATOR	•••••	•••••		65
11.2.1 Schematic				65
11.2.2 Simulation		•••••		66
11.2.2 Generate HDL Ne	ətlist			66
11.3 PINOUTS		••••••••••		67
11.4 IESTING	••••••	••••••		67
12. COMPARING MATLAB	SYSTEM GENER	RATOR AND XILI	NX ISE	68
12.1 SIMILARITIES 12.2 ADVANTAGES AND I		S OF MATLAR S	YSTEM	68
GENERATOR			TOTEM	68
12.3 ADVANTAGES AND I	DISADVANTAGE	S OF ISE 9.1		68
13. CONCLUSIONS				69
REFERENCES				71
BIBLIOGRAPHY				72
				70
AFFENDICES				13