HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT


COMPUTER VISUALIZATION OF AN INDUSTRIAL PRODUCT

PROJECT NUMBER: M/719

STUDENT: KYRIAKOS MOESI (3Me1)

SUPERVISOR: Mr. PARASKEVAS DEMETRIOU

JUNE 1995

<u>ACKNOWLEDGEMENTS</u>

I would like to express my deep thanks to my project supervisor Mr. Paraskevas Demetriou for his advices, time, help and especially his support through the wole period of the project construction and organization.

I would also like to thank Dr. Marinos Joannides who made available to me material used in the project.

like
Finally I would to thank my family for their support and patience.

Kyriakos Moesi

COMPUTER VISUALIZATION OF AN INDUSTRIAL PRODUCT

SUMMARY

The purpose of this project is to study the various methods for presenting ideas of new products, to investigate the computer requirements for preparing 3D models and to prepare models of locally made products.

A presentation of existing methods of techniques for preparing models of new products is described.

Emphasis is given to the methods of constructing 3D models with the use of computers. A hand drill 3D model in motion was made on the computer by the aid of popular software.

CONTENTS

CHAPTERS	HAPTERS TITLE		
CHAPTER 1.	INTRODUCTION	1	
1.1.	DESIGNING	1	
1.2.	PROBLEM SETTING, ACTUAL DESIGNING AND		
	FOLLOW UP	1	
1.3.	VISUALIZATION	2	
1.4.	DESIGNING LAYOUT WAYS	4	
CHAPTER 2.	PROJECTIONS	5	
2.1.	PROJECTIONS - WAYS TO SEE THINGS	5	
2.2.	ORTHOGRAPHIC PROJECTION	5	
2.3.	AXONOMETRIC PROJECTION	6	
2.4.	ISOMETRIC PROJECTION	6	
2.5.	OBLIQUE PROJECTION	7	
2.6.	PERSPECTIVE PROJECTION	7	
CHAPTER 3.	METHODS OF PRESENTING IDEAS OF NEW		
	PRODUCT	10	
3.1.	DRAWING	10	
3.1.1.	ENGINEERING DRAWING	11	
3.1.2.	FREEHAND SKETCHING	13	
3.1.2.a.	CREATION OF A FREEHAND MULTIVIEW SKETCH		
3.1.2.b.	FREEHAND ISOMETRIC SKETCHING	16	
3.1.2.c.	SHADING	18	
3.2.	RENDERINGS	19	
3.3.	MODEL MAKING	21	
3.3.1.	CLAY STUDY	21	
3.3.2.	SCALE MODELS	22	
3.3.3.	MOCK-UPS	24	
3.3.4.	PROTOTYPE	25	
	WOOD MODEL FORMATION	25	
3.3.6.	MODEL-MAKING MATERIALS	25	

3.4.	VISUAL COMPUTER MODELLING	27		
CHAPTER 4.	COMPUTER GRAPHIC SIMULATION	28		
4.1.	4.1. GEOMETRIC MODELLING			
4.1.1.	WIRE-FRAME MODEL	29		
4.1.2.	SURFACE MODEL	30		
4.1.3.	SOLID MODEL	31		
4.2.	CONSTRUCTION OF A 3D COMPUTER MODEL	32		
4.2.1.	CREATING A 3D DATA BASE	33		
4.2.2.	CONSTRUCTING A SOLID MODEL THROUGH			
	BOUNDARY DEFINITION	33		
4.2.2.a.	SWEEPING (OR EXTRUDING OR LOFTING)	34		
4.2.2.b.	GLUING	38		
4.2.2.c.	GLUING COMBINATIONS WITH BOOLEANS	39		
4.2.3.	DEFORMATION GRIDS	40		
4.2.3.a.	SCALE FORMATION			
4.2.3.b.	TEETER DEFORMATION	41		
4.2.3.c.	BEVEL DEFORMATION	41		
4.2.3.d.	TWIST DEFORMATION	42		
4.3.	DEFORMATION WITH TWEAKING	43		
4.4.	THE FIT TOOL	44		
4.5.	THE ARTISTIC POINT OF VIEW	46		
4.5.1.	THE LIGHTS	46		
4.5.2.	THE CAMERAS			
4.5.3.	THE MATERIALS	47		
4.5.4.	THE MAPS	47		
CHAPTER 5.	COMPUTER REQUIREMENTS FOR THE			
	CONSTRUCTION OF 3D MODELS	48		
5.1.	LAYOUT WAYS	48		
	THE OPERATING SYSTEM	49		
5.2.1.	THE COMPUTER EQUIPMENT NEEDED FOR			
	AUTOCAD	49		
CHAPTER 6.	THE COMPUTER 3D MODEL VISUALIZATION	55		

CONTENTS

CHAPTERS	APTERS TITLE	
CHAPTER 1.	INTRODUCTION	1
1.1.	DESIGNING	1
1.2.	PROBLEM SETTING, ACTUAL DESIGNING AND	
	FOLLOW UP	1
1.3.	VISUALIZATION	2
1.4.	DESIGNING LAYOUT WAYS	4
CHAPTER 2.	PROJECTIONS	5
2.1.	PROJECTIONS - WAYS TO SEE THINGS	5
2.2.	ORTHOGRAPHIC PROJECTION	5
2.3.	AXONOMETRIC PROJECTION	6
2.4.	ISOMETRIC PROJECTION	6
2.5.	OBLIQUE PROJECTION	7
2.6.	PERSPECTIVE PROJECTION	7
CHAPTER 3.	METHODS OF PRESENTING IDEAS OF NEW	
	PRODUCT	10
3.1.	DRAWING	10
3.1.1.	ENGINEERING DRAWING	11
3.1.2.	FREEHAND SKETCHING	13
3.1.2.a.	CREATION OF A FREEHAND MULTIVIEW SKETCH	14
3.1.2.b.	FREEHAND ISOMETRIC SKETCHING	16
3.1.2.c.	SHADING	18
3.2.	RENDERINGS	19
3.3.	MODEL MAKING	21
3.3.1.	CLAY STUDY	21
3.3.2.	SCALE MODELS	22
3.3.3.	MOCK-UPS	24
3.3.4.	PROTOTYPE	25
3.3.5.	WOOD MODEL FORMATION	25
3.3.6.	MODEL-MAKING MATERIALS	25

6.1.	THE HAND DRILL MODEL		
6.2.	THE VISUALIZ	ATION OF THE MODEL	55
CHAPTER 7	COMPUTER 3D	MODELS AND H.T.I.	58
CHAPTER 8	CONCLUSIONS		60
	REFERENCES		62
	APPENDIXES		64
	APPENDIX A	THE DRAWINGS OF THE HAND	
		DRILL	65
	APPENDIX B	STEREOLYTHOGRAPHY	69