HIGHER TEHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

PROJECT TITLE:

AIR CONDITIONING SYSTEM DESIGN FOR A LARGE BUILDING

PROJECT REPORT SUBMITTED BY:

- 1. APOSTOLIDIS DIMITRIS
- 2. TRINGOS MICHALIS

PROJECT SUPERVISOR:

I. MICHAELIDIS LECTURER, H.T.I.

JUNE 1989

TECHNICAL INSTITUTE 1537

INTRODUCTION

The control of indoor climate is an importand industry in Cyprus and throughout the world generally. Only in a few favored areas of the earth's temperate zones can people live comfortably and work effectively the year round without some form of winter heating and/or summer cooling. The science and practice of creating a controlled climate, that is, conditions that are conducive to human comfort is called air conditioning.

An air conditioning system is a combination of various components which by operating in a controlled manner, produce and maintain the "artificial" comfort environment which is so desirable. The term air conditioning is sometimes misunderstood or misused. Often only cooling is implied when air conditioning is mentioned. However in practice to provide complete air conditioning a system must accomplish all the following: HEATING, HUMIDIFICATION, COOLING, DEHUMIDIFICATION, VENTILATION, FILTERING and CIRCULATION. Systems which omit one or more of the above seven functions are therefore not complete systems.

In Cyprus air conditioning is widely used in business enterprises such as banks, office buildings, shops and hotels, but domestic air conditioning is limited mainly due to its current relatively high initial cost. However, lately domestic air conditioning started becoming quite popular.

Because Cyprus island enjoy a very sunny climate with long periods of bright sunshine and high insolation, a lot of tourists are attracted every year, but especially in the summer period. High demand levels for hotel beds, resulted to the rapid development of hotel industry and many hotels have been erected and other are still under erection, a lot of which are situated near the lovely beaches. Due to the big number of hotels and the need of high capacity air conditioning installations to service

- 5 -

them, the higher percentage of capital expenditure in the air conditioning sector is in the hotel air conditioning field.

The building in concern consist of four flat floors, the ground floor mesanine and the basement. The basement contains mainly stores, equipment rooms, staff rooms and the mechanical room. For the sake of keeping both the initial and running costs of the air conditioning plant as low as possible the basement rooms will not conditioned.

On the other hand ground floor and mesanine contains shops that must be conditioned.

The foor floors contain the Flats, 4 each which wil be fully air-conditioned. Again for keeping initial and running expenses down the corridors will not be conditioned.

-б-

	Introduction	Page 5
	·	
	Chapter 1	
1.	U-values estimation	7
1.1	Definition of U-value	8
1.2	Definition of terms used for the	13
	calculation of U-values	
1.3	Calculation of U-values	18
	Chapter 2	
2.1	Design conditions	23
221.1	Outside Design conditions	23
2.1.2	Insite Design conditions	23
2.2	Selection of insite conditions	25
	Chapter 3	
3.	Analysis of the air conditioning load	26
	Part 1 Cooling load	29
3.1	Introduction	30
3.1.1	Load classification	30
3.1.2	System installation loads	32
3.1.3	Further load classification	33
3.1.4	Variability of cooling load	34
3.2	Solar heat gain through glass	37
3.2.1	Introduction	37
3.2.2	Solar heat gain values	38
3.2.3	Heat storage	39
3.2.4	Shading	40
3.3	Heat gain due to Infiltration and	44
	ventilation	
3.3.1	Sensible heat component	44
3.3.2	Laten heat component	45

		Page
	Part 2::Heating load	47
3.4	Heating load	48
3.4.1	Sensible heat load	43
3.4.2	Laten head load	48
3.5	Simplicity of heating load estimation	48
3.5.1	Winter loads classification	49
3.5.2	Structural or transmission losses	49
3.5.3	Heating load due to ventilation and	50
	infiltration	
3.6	The Crankage Method	52
3.7	Assuptions for heating load	54
	calculations	
3.8	Groups of rooms with identical loads	54
	Chapter 4	
4.	Air conditioning system selection	55
4.1	Alternative solutions for use	56
4.1.1	Heat pump for cooling and heating	56
4.1.2	Fun coil units	56
4.1.3	Only cooling split units with	56
	ratiators for heating	
4.2	Air conditioning system objectives	57
4.3	Classification of air conditioning	. 57
	systems	
4.3.1	Classification as to season of the year	58
4.3.2	Classification as to equipment arrangeme	ent59
4.3.3	Central station systems	61
4.3.4	Combination Systems	68
4.4	Air conditioning system components	68
	Chapter 5	
5.1	Computer forms	74
5.2	Explanation of the computer forms	206
5.3	Computer results	212
5.4	Sample calculation	218

,

•

		<u>ruge</u>
	Chapter 6	
6.1	System selection	234
6.2	Selection of the chiller	236
6.3	Selection of the boiler	238
6.4	Selection of the burner	238
6.5	Selection of the boiler flue	239
6.6	Selection of the expansion tank	240
6.7	Selection of the oil tank	241
6.8	Selection of the pump	242
6.9	Selection of the FCU	243
6.10	Selection of Radiators	247
6.11	Energy meters	248
6.12	Selection of grilles and extract	
	units for bathrooms	248
6.13	Piping	249
	Chapter 7	
7.	Installation of equipments	250
7.1	Boiler	251
7.2	Burner	253
7.3	Boiler flue	253
7.4	Air cooled water chiller	254
7.5	Fun coil units	257
7.6	Pumps	258
7.7	Piping	260
7.8	Pipework supports	262
7.9	Insulation	263
7.10	Oil storage tank	264
7.11	Toilet Ventilators	
7.12	Valves	264
	Chapter 8	
8	Maintenance	0.65
0.		265

8.1	Introductory	266
8.2	Boiler	266

5

Pages

8.3	Burner	267
8.4	Pumps	268
8.5	Air filters	269
8.6	Chiller	269
	ş ¹	
	Chapter 9	
9.1	Cost analysis	272
9.2	Conclusions	274
	Chapter 10	
	Detail drawing of equipments	278
	Chapter 11	
	Appendices	

na anna an Aonaichtean an Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean A An Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean Aonaichtean A

A second s