HEGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A HIGH SPEED HOIST

M / 839

BY: TSINGIS POLIS

HIGHER TECHNICAL INSTITUTE

8

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A HIGH SPEED HOIST

M/889 TSINGIS POLIS

JUNE 2000

DESIGN OF A HIGH SPEED HOIST

.

by Polis Tsingis

Project Report Submitted to the Department of Mechanical Engineering of the Higher Technical Institute Nicosia Cyprus

in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER in MECHANICAL ENGINEERING

June 2000

CONTENTS

8

ACKNOWLEDGEMENT

SUMMARY INTRODUCTION

CHAPTER 1	ACCOMMODATION	
1.1	Well	1
1.2	Machine room	1
1.3	Cars	3
1.3.1	General	3
1.3.2	Goods Cars	5
1.3.3	Car travelling cable	7
1.4	Well, Car, Machine Room arrangement	9
CHAPTER 2	WIRE ROPE	
2.1	General	10
2.2	Tensile Force exerted on the Rope	11
2.3	Selection of Rope	12
2.4	Rope Fastening	14
2.5	Thimble	15
CHAPTER 3	DESIGN OF THE CAR	
3.1	General	15
3.2	Design of the Sling	15
3.2.1	Design of the Crosshead	15
3.2.1.1	Bending Moment and Shear Force Diagram	17
3.2.1.2	Allowable Stress	18
3.2.1.3	Section Modulus	18
3.2.2	Design of the Bottom Sections	19

PAGE

3.2.2.1	Allowable Stress	19
3.2.2.2	Section Modulus	19
3.2.3	Design of the Side Frames	20
3.2.3.1	Allowable Stress	20
3.2.3.2	Area	20
3.2.4	Bolts for the Sling	21
3.2.4.1	Failure of Bolt by Shear	21
3.2.4.2	Failure of Bolt by Bending	22
3.2.5	Design of the Car	22
CHAPTER 4	COUNTERWEIGHT	
4.1	General	23
4.1.1	Total Weight of Counterweight	24
4.1.2	Counterweight Blocks	24
4.1.3	Number of Counterweight Blocks	24
4.2	Design of Frame	25
4.2.1	Bending Moment and Shear Force Diagram	25
4.2.2	Allowable Stress	26
4.2.3	Section Modulus	26
4.3	Bolts for the Counterweight Frame	27
4.3.1	Failure of Bolt by Shear	27
4.3.2	Failure of Bolt by Shear	28
CHAPTER 5	GUIDES	
5.1	General	29
5.2	Material	29
5.3	Sizes	30
5.4	Guide Stresses	32
5.5	Fixing and Jointing	34
5.5.1	Section of a Fishplate	40
5.5.2	Sliding Clips	41
5.6	Guide Lubrication	42

CHAPTER 6	POWER TRANSMITION	
6.1	Motors - General	44
6.1.1	Theoretical Power of the Lift W.T.	56
6.1.2	Worm Gearing	56
6.2	Traction Drive	58
6.2.1	Sheaves	60
6.3	Diameter of Sheave	63
6.3.1	Key for Pulley and Shaft	64
6.4	Design of the Diverting Pulley	66
6.4.1	Diverting Pulleys	66
6.4.2	Estimation of Diverting Pulley Diameter	67
6.4.3	Specific Pressure of the Ropes in the Groove	68
6.4.4	Determination of Coefficient of Friction between Rope and Shear	68
6.5	Design of the Shaft Securing Diverting Pulley	70
6.5.1	Bending Moment and Shear Force Diagram	70
6.5.2	Estimation of the Diameter of the Shaft	71
6.5.3	Failure due to Combined Stresses	72
6.5.4	Maximum Bending Stress	72
6.5.5	Safety Factor of the Shaft	74
6.6	Design of Key for Diverting Pulley and Shaft	74
CHAPTER 7	BRAKES	
7.1	Braking Torque	76
7.2	Types of Brake	76
CHAPTER 8	DOORS	
8.1	Selection of Type of Doors	78
8.2	Power Operation	80
8.3	Controlled Power Closing of Doors	82
8.4	Car Gate Locks	83
8.5	Landing Door Locks	83
anna 42, 1261		

CHAPTER 9	SAFETY FEATURES	
9.1	Car and Counterweight Safety Gears	86
9.1.1	Governor Tripping Speeds and safety Gear stopping	
×.	Distances	88
9.1.2	Car and Counterweight Clearances and Runbys	88
9.1.3	Governor Rope Carriers	89
9.4	Governors	90
9.1.5	Normal Terminal Stopping Switches	91
9.1.6	Final Terminal Stopping Switches	92
9.2	Buffers	93
9.3	Car Emergency Exit	94
9.4	Emergency Stop Push	95
9.5	Ventilation of Machine Room	96

8

CHAPTER 10	MAINTENANCE AND TESTING	
10.1	Inspections made in the Machine Room	96
10.2	Inspections made from the Landings	101
10.3	Inspections made from inside the Car	101
10.4	Inspections made from the top of the Car	102
10.5	Inspections made from the Pit	104

CHAPTER 10 COST ANALYSIS 105

CONCLUSION REFERENCES APPENDICES DRAWINGS

ACKNOWLEDGEMENTS

a

I would like to express my sincere thanks and appreciation for help and guidance given to me by my project supervisor Mr. N. Papanastasiou.

I would also like to thank my mother Mrs Maria Tsingi who has kindly undertaken the typing of this project.

Finally, thanks to all those who helped in any way in order for this project to come to a successful end.

SUMMARY

The objective of this project is to design a high speed hoist for a multi-storey building, for lifting a cage of goods of total mass of 1200kg. Conditions to be satisfied are: Weight of balancing mass 500kg. The multi-storey building to be of 30m high.

Also, to present complete design calculations; to present manufacturers catalogues and selection procedures for the machine components to be used. To present assembly drawings, to make separate detail drawings to a large scale for small components and to prepare a cost estimate for the disign.

The whole project is divided into 11 chapters

Chapter 1, deals with the requirements of the well, machine room, cars, car travelling cable and their dimensions.

Chapter 2, deals with the wire rope selection with some relevant calculations for estimation of its diameter and the tensile force exerted on it. Also, it deals with rope fastening and selection of thimble.

Chapter 3, deals with the Design of the car and calculation for the design of the various parts which consist it.

Chapter 4, deals with the design of the counterweight and calculations for the design of the various parts which consist it.

Chapter 5, deals with the selection of the guides, method of fixing and jointing, selection of sliding clips and guide lubrication.

Chapter 6, deals with the power transmition, relevant calculations for the design of the sheave, diverting pulley, shafts, keys, keyways and the selection of the engine.

.

Chapter 7, deals with the calculation of braking torque and selection of type of brake.

Chapter 8, deals with the selection of type of doors, operation, and locks.

Chapter 9, deals with the safety features all elevating devices must be provided with.

Chapter 10, deals with the maintenance and Testing procedures.

Chapter 11, analyzes the total cost.