HIGHER TECHNICAL INSTITUTE

CIVIL ENGINEERING COURSE,

DIPLOMA PROJECT

AN EXPERIMENTAL INVESTIGATION ON THE IMPACT STRENGTH OF FIBRE REINFORCED CONCRETE

C/568

CHRISOSTOMIDES GEORGIOS MICHAELIDES GEORGIOS

JUNE 1991

Project Supervisor: Dr. Herodotos Stavrides Senior Lecturer in Civil Engineering Higher Technical Institute.

External Assesor:

Type of Project: Individual

Group

 \times

June, 199

¥

This study is divided into $\int \sigma u^r$ parts. In the first part a literature survey on fibre reinforced cement composites was made; to expose the influence of steel fibres on the strength and impact resistance of concrete.

In the second part a literature survey was carried out the effect of accelerated curing on the strength of concrete and applications and port research on S.F.R.C.

In the third part an experimental investigation was carried out into the effect of both accelerated curing and steel fibre inclusion on the strength and impact resistance of concrete.

In the fourth part general comments. conclusions and recommendations for future work were summarised.

CONTENTS

Chapter	1.		1
	1.1	General	2
	1.1.1	Matrix	4
	1.1.2	Fibres	4
	1.1.3	The structure of the Fibre-Matrix	
		interface	9
	1.1.4	Fibre-Cement Ineractions: Stress	
		Transfer, Bond and Pull-out	10
	1.1.4a	Debonding and Pull-out Processes	
		in Real Cementitious Composite	12
	1.2	Test Methods	14
	1.2.1	Properties of fresh mix	14
	1.2.2	Workability	14
	1.2.3	Fibre Content in the fresh mix	17
	1.2.4	Plastic shrinkage cracking	17
	1.3	Properties of Hardened Composite	20
	1.3.1	Static Testing of Tensile and	
		flexural properties	20
	1.3.2	Impact Testing	24
	1.3.3	Static Versus Impact Tests	26
	1.3.4	Fibre Pull-Out	27
	1.3.5	Determination of fibre Content	
		Distribution	27
	1.3.6	Shrinkage and Cracking of Hardened FRC	29
	1.3.7	Durability Testing	31
	1.4	Steel Fibres	32
	1.4.1	Technologies for producing SFRC	33
	1.4.2	Special techniques for placing SFRC	34
	1.4.2.1	Pumping	35
	1.4.2.2	Extrusion \checkmark	35
	1.4.2.3	Steel fibre Shorcrete	35
	1.4.2.4	Other Production Technologies	36
	1.4.3	Mix design of SFRC	36
	1.4.4	Mechanical Properies of SFRC composites	37

Page

			Page
	1.4.4.1	Fibre ofientation and distribution	38
	1.4.4.2	Fibre Efficiency	38
	1.4.5	Static mechanical properties	39
	1.4.5.1	Compressive Strength	39
	1.4.5.2	Tensile Strength	39
	1.4.5.3	Flexural Strength	39
	1.4.5.4	Toughness	40
Ļ	1.4.5.5	Shear and Torsion	40
	1.4.5.6	Multiaxial loading	40
	1.4.5.7	Abrasion, Erosion Caritation	40
	1.4.5.8	Shrinkage and Creep	41
	1.4.6	Structural use of SFRC	41
	1.4.7	Durability of SFRC	42
	1.4.8	Temperature Extremes	42
	1.4.9	Practical Application of steel	
		fibre reinforced concrete	43
	1.4.10	Applications in Cyprus	44
	1.5	Other fibres	44
	1.5.1	Plastic fibres	44
	1.5.2	Glass fibres	45
	1.5.3	Asbestos	47
	1.5.4	Natural fibres	48
	1.6	Special fibres reinforced	
4		cementitious system	48
/	1.6.1	Hybrid fibre systems	49
	1.6.2	Polymer - Cement matrices	49
	1.6.3	Fibre Reinforced High Strength	
4		Cementitious Matrices	50
	1.6.4	High Volume, High Aspect Ratio	
		Fibre Comosites	50
		General Conclusions	52

			Page
Chapter	2	Past research	54
	2.1	Past research	54
	2.2	Other fibres	56
	2.2.1	Compressive strength	57
	2.2.2	Tensile strength	57
	2.2.3	Flexural strength	58
	2.2.4	Flexural toughness	58
	2.2.5	Shear and Torsion	58
Chapter	3	Past research Literature Survey	
		of accelerated curing	61
Chapter	4	Experimental Investigation	67
	4.1	The experimental Program	68
	4.1.1	Preamble: Aim of research program	68
	4.1.2	Mix proportions	68
	4.2	Materials	70
	4.3	Procedure	71
	4.4	Test results	75
	4.4.1	Compressive strength	75
	4.4.2	Impact resistance	75
	4.4.3	Flexural toughness	75
	4.5	Observation	80
	4.6	Conclusions	82
		References	84