COMPUTER CONTROL OF A ROBOT ARM

Project Report Submitted by : THEOCHARIDES CHRISTOS

Project Report submitted to the Mechanical Engineering Department of the Higher Technical Institute Nicosia, Cyprus

in partial fulfillment of the requirements

for the diploma of

Technician Engineer

in

Mechanical Engineering

Supervisor : A. Stassis

JUNE 1991

SUMMARY

As the first objective of the project was to become conversant with the language of the subject an overview of robotics is provided in the introduction with historical background.

To completely satisfy this objective in chapter 2 the robot system is described, in chapter 3 a classification is provided and finally the power sources and control techniques are explained in chapters 4 and 5 respectively.

In chapter 6 the ALPHAII+ robot arm is described. Chapter 7 refers to the procedure followed in constructing the interface.

Teach control programming is explained in chapter 8.

Computer control language is issued in chapter 9.

Chapter 10 contains the cartesian coordinates to stepper motor pulses conversion.

In chapter 11 the appropriate language is selected and the operation of the program is described.

Chapter 12 analyses program step-by-step.

Finally in chapter 13 the concequences from the introduction of robots in modern society are reviewed.

CONTENTS

ACKNOWLEDGEMENTS	
SUMMARY	
CHAPTER 1:	
INTRODUCTION	1
CHAPTER 2:	
2. ROBOT SYSTEM	· 4
2.1 TEACH CONTROL	4
2.2 PERMANENT PROGRAM STORAGE	6
2.3 CONTROLLER	6
2.4 ROBOT ARM	6
7.5 END-OF-ARM TOOLING	8
CHAPTER 3:	
3. CLASSIFICATION OF ROBOTS	11
3.1 RECTILINEAR OR CARTESIAN	
COORDINATE ROBOTS	11
3.2 CYLINDRICAL COORDINATE ROBOTS	13
3.3 SPHERICAL COORDINATE ROBOTS	14
CHAPTER 4:	
4. POWER SOURCES	16
4.1 HYDRAULIC DRIVE	16
4.2 PNEUMATIC DRIVE	18
4.3 ELECTRIC DRIVE	18
CHAPTER 5:	
5.1 NON - SERVO CONTROLLED ROBOTS	20
5.2 SERVO CONTROLLED ROBOTS	21
5.3 POINT - TO - POINT CONTROLLED ROBOTS	23
5.4 CONTINUOUS-PATH (CP) CONTROLLED ROBOTS	23

Page

		 March 10 	-	
ATT 7 76	77m	TTO	6.0	
L.MA	P I	CR.	0.	

GENERAL RESCRIPTION OF ALPHAII+ ROBOT	25
6.1 PERFORMANCE SPECIFICATIONS	26
<u>CHAPTER 7:</u>	
CONSTRUCTION OF THE COMPUTER INTERFACE	29
7.1 ELECTRICAL CONNECTIONS	29
7.1 TRANSMISSION RATE	31
7.3 DATA FORMAT	31
7.4 TESTING THE CONFIGURATION	32
CHAPTER 8:	
EACH CONTROL	34
8.1 CONTROL (RED) OVERLAY	35
8.2 ENTER (YELLOW) OVERLAY	35
8.3 AUXILIARY (GREEN) OVERLAY	36
8.5 INTERNAL PROGRAM PRESENTATION	37
8.6 CONTROL FUNCTIONS OF THE TEACH	
CONTROL	41
8.6.18 CALIBRATE	49
8.6.19 INS/PEL	49
8.6.20 JSR/RTS	49
8.6.21 EDIT PARAMETER	50
8.7 OPERATOR CONTROL	50
CHAPTER 9:	
COMPUTER CONTROL	53
9.1 @ STEP	56
9.2 @ CLOSE	61
9.3 @ SET	62
9.4 @ RESET	63
9.5 @ READ	63
9.6 @ ARM	65

<u>Page</u>

9.7 @ DELAY	66
9.8 @ Q DUMP	68
9.9 @ Q WRITE	68
9.10 @ RUN	69
9.11 @ GOHOME	69
9.12 @ OFF	70
9.13 @ SAVE	70
9.14 @ TEXT	71
9.15 @ MODE	71
9.16 @ IMPORT	72
9.17 @ ORBIT	72
9.18 @ ERROR MESSAGE	72
CHAPTER 10:	
10.1 COORDINATE CONVERSION	
INTO JOINT ANGLES	80
10.2 SPECIFYING POSITION/OPERATION	80
10.3 SPECIFYING ROLL IN CARTESIAN FRAME	82
CHAPTER 11:	
11.1 LANGUAGE SELECTION	93
11.4. DIRECT PROGRAMMING MODE	107
11.5 RUN A PROGRAM MODE	110
CHAPTER 12: PROGRAM ANALYSIS	
12.2 INITIALIZATION	115
12.3 MAIN - MENU	115
12.4 FILE UTILITIES MODE	116
12.6 STEP COMMAND	124
12.7 CLOSE COMMAND	125
CHAPTER 13: SOCIAL	
IMPLICATIONS	133
CONCLUSIONS	137