FUGHER TECHNICAL INSTITUTE Electrical engineering department DIPLOMA PROJECT

MULTIFUNCTION MCS 51 BOARD

E 1121

BY: CERYSANTHOS PAPAPETROU

JUNE 1998

HIGHER TECHNICAL INSTITUTE NICOSIA – CYPRUS

MULTIFUNCTION MCS 51 BOARD

Project report submitted in partial fulfilment of the requirements for the award of the Diploma of Technician Engineer in Electrical Engineering

Project Number E1121

BY CHRYSANTHOS PAPAPETROU

Project Supervisor : C. Theopemptou, *Lecturer*

External Assessor : A. Alexandrou , CYTA

To my family,

To Polina and my friends,

For all their help which they offered me with love and understanding throughout my years at H.T.I and especially throughout this project.

Contents

Page

АСК	NOWLEDGEMENTS	i
LIST OF FIGURES AND PHOTOS i		
LIST	OF TABLES	iii
SUM	IMARY	iv
INTI	RODUCTION	v
<u>CHA</u>	PTER 1 THE MCS 51 FAMILY OF MICROCONTROLLERS	
1.1	Microprocessors and microcontrollers	1
1.2	The MCS 51 family	3
1.3	Architecture of 8051 Microcontroller	
	1.3.1 Introduction	4
	1.3.2 Technical features of the 8051	5
	1.3.3 Pin configuration	7
	1.3.4 Memory organization	10
	1.3.5 Special Function Registers	11
	1.3.6 Ports	12
	1.3.7 Timers/counters	14
1.4	Intel's MCS 51 family of microcontrollers	15
1.5	Philips 80CS51 family of microcontrollers	16

<u>CHAPTER 2</u> SERIAL, PARALLEL DATA COMMUNICATION AND THE 8255PPI

2.1	Serial	data communication	18
2.2	Basic	concepts in Serial Communication	19
	2.2.1	I/O Requirements	19
	2.2.2	Alphanumeric Codes (ASCII)	19
	2.2.3	Baud rate	19
	2.2.4	Synchronous and asynchronous transmission	20
	2.2.5	Serial Transmission Standards	21
2.3	RS-23	2C Interface Standard	22

2.4	The MAX232 driver/receiver	22
2.5	The 8051	
2.6	Parallel Communication	23
2.7	The 8255 Programmable Peripheral Interface	24
	2.7.1 Control logic	24
	2.7.2 Control word	25
	2.7.3 Modes of operation	26
	2.7.4 Reset condition	26

CHAPTER 3 THE MULTIFUNCTION MCS 51 BOARD

3.1	Introduction	27
3.2	Constructing the board	27
3.3	Detailed description	27
3.4	Schematic	29
3.5	Components list	30
3.6	PCB of the Multifunction Board	31

CHAPTER 4 THE AUXILIARY BOARDS

4.1	Introduction	34
4.2	The PC based Digital Clock diagram and its components list	34
4.3	The MAX-232 diagram and its components list	37
4.4	The Reset Circuit	38
4.5	The Oscillator circuit of the Multifunction Board	38
4.6	The Power Supply	39

<u>CHAPTER 5</u> TROUBLE SHOOTING THE MICROCONTROLLER

5.1	Introduction	40
5.2	Free-run testing	41
5.3	Signature analysis	41
5.4	Logic Analysis	42
5.5	In circuit emulation	43
5.6	Diagnostic software	43

CHAPTER 6 TESTING THE MULTIFUNCTION BOARD – THE SOFTWARE

6.1	Testing the functionality of the Multifunction MCS 51 Board	52
6.2	Other methods for testing the Multifunction Board	53
	6.2.1 The keyboard	55
	6.2.2 Seven Segments Display	59

APPENDIX A	Single line diagrams
APPENDIX B	Printed Circuit Boards (PCBs)
APPENDIX C	Intel's MCS51 Family of Microcontrollers-Architectural Overview
APPENDIX D	Intel's 8051, 8052 and 80C51 Hardware description
APPENDIX E	Intel's 80C31/80C51BH/87C51Data Sheets
APPENDIX F	Intel's MCS51 Programmer's Guide and instruction Set
APPENDIX G	Philips 80C51 Family of Microcontrollers

REFERENCES		65
------------	--	----

Acknowledgements

I would like to express my gratitude to Mr Charalambos Theopemptou, my project supervisor, who has succeeded in evoking in me the strive for research and the determination to work hard in order to finish this project.

I would also like to thank the personnel of

- CYTA Electronic workshop
- the C.I.C Ltd, I.T.D Division (MITAC computers)

for their valuable assistance and technical advice.

My deep appreciation goes especially to Mr Kyriacos Kylilis of CYTA, whose technical and scientific advice has helped me to cope with my project.

I am also grateful to my friends

- Paulina, for her valuable assistance in typing the project
- Michalis Kambourides, for helping me with the software
- Michalis Christodoulou, for his support and advice.

Finally, I want to thank my parents for their support throughout the project.

Table of figures and photos

Ecure 1 1 1	A Plack Discrementa Micromanager	1
		1
Figure 1.1.2	A Block Diagram of a Microcontroller	2
Figure 1.3.1	Block Diagram of 8051	5
Figure 1.3.2	Programming features	6
Figure 1.3.3	8051 pin out	9
Figure 1.3.4	Internal Design of 8051	10
Figure 2.2.1	Synchronous and Asynchronous Transmission format	20
Figure 2.2.2	Asynchronous 8-bit Character	20
Figure 2.2.3	Minimum Configuration of control signals between DTE and	
DCE (a	and RS-232C signal definitions and pin assignments (b)	21
Figure 2.3.1	Using the MAX 232 to convert the TTL signals	
	compatible to the RS-232C signals and vice versa	22
Figure 2.6.1	Parallel connection of the PC with the 8051	23
Figure 2.7.1	8255 I/O (a) and their Modes (b)	25
Figure 2.7.2	8255 Control Format for I/O Mode	26
Figure 3.4.1	The circuit diagram of the General Purpose Board	29
Figure 3.6.1	PC board layout	31
Photo 3.6.1	8051 Development Printed Circuit Board, component side	32
Photo 3.6.2	8051 Development Printed circuit Board, solder side	33
Photo 3.6.3	8051 Development Printed circuit Board, solder side (modif.).	33
Figure 4.2.1	The circuit diagram of the Digital Clock	36
Figure 4.3.1	The circuit diagram of MAX232	37
Figure 4.4.1	The Reset Circuit	38
Figure 4.5.1	Oscillator circuit	39
Figure 5.2.1	Waveforms at the address bus when the μC is set at free running	41
Figure 5.3.1	Block Diagram of a Signature Analyser	42
Figure 5.5.1	Block Diagram of an In Circuit Emulator	43
Figure 6.2.1	Lead-per-key and coded Keyboard Interrupt Circuits	56
Figure 6.2.2	Segment Pattern an Segment Circuit	59
Figure 6.2.3	Seven-Segment Display Circuit used for "Svnseg" program	60

List of tables

Table 1.1.1	Some differences between a microprocessor	
	and a microcontroller	3
Table 1.2.1	The MCS 51 family of microcontrollers	4
Table 1.3.1	Special Function Register Addressing	12
Table 1.4.1	Comparison between the MCS 51, 151 and 251 Intel's	
	Microcontrollers	16

SUMMARY

Multifunction MCS 51 Board by Chrysanthos Papapetrou

The general objectives of this project are:

- to investigate the various types of microprocessors manufactured by Intel under their MCS51 brand series
- to investigate the various types of microprocessors manufactured by others such as Philips with compatibility and added features as that the Intel MCS51
- to select the appropriate microprocessor for use at H.T.I
- to investigate the types of possible solutions for a general purpose board and the facilities that are normally offered.
- to investigate the possibilities of programming these microprocessors in the laboratories of H.T.I
- to design, construct, build and test a general purpose MCS 51 based board that is easy to construct at low cost and provide all the basic features of a multifunction board.
- to provide some basic software to aid in the use of the board in the form of a simple BIOS.
- to provide a testing set-up to prove the functionality of the board.
- to provide utilities and resources for assisting the development of MCS 51 based solutions.

The main objective of this project was to construct a general purpose multifunction board. An 8051 microcontroller has been selected among the family of MCS 51 series because it has the best features for the purpose it is aimed for and it has a low cost. It has four 8-bit I/O ports. Two of them combined make a 16-bit address, which control the EPROM, the RAM and two 8255 Programmable Peripheral Interface. The two 8255 PPIs increase the number of ports to six. The 8051 microcontroller has also a serial port which in combination with MAX232 can serve for serial communication.

In order to test the multifunction board, basic software in assembly language has been developed. Originally the microcontroller was programmed for output operation only but the output could be monitored by an oscilloscope. In order to make the output visible a delay subroutine was introduced between the commands. Finally, by using input commands the output was displayed with the aid of light emitting diods (LEDs).

The construction of the general purpose board was successfully completed and tested.

The multifunction board can be used in various control applications. Its main advantages is the low cost of its components and the diversity of its uses.

INTRODUCTION

The engineering community became aware of the 8-bit microprocessors of the middle to late 1970's. The bit size, cost, and power of these CPUs were particularly useful for specific tasks involving data gathering, machine control, human interaction, and many other applications that granted a limited intelligence to machines and appliances. Because of the advances in the semiconductor technology, the "million pounds" computer of the 1960s is now available for less than five pounds, in an integrated circuit called microprocessor.

In 1976 Intel introduced the MCS 48 family consisting of the 8048, 8748, and 8035 microcomputers. These parts marked the first time a complete microcomputer system, including an 8-bit CPU, 1024 8-bit words of ROM or EPROM program memory, 64 words of data memory, I/O ports and an eight-bit time counter could be integrated onto a single silicon chip. Depending only on the program memory contents, one chip could control limitless variety of products, ranging from appliances or automobile engines to text or data processing equipment.

The 4-bit child has grown to a 32-bit adult, the increasing demand has led to new generations of complex CPUs. The engineering applications, however, continue to be best served by 8-bit CPUs with limited memory size and I/O power. Cost per unit also continues to dominate processing considerations. Using an expensive 32-bit microprocessor to perform functions that can be efficiently served by an inexpensive 8-bit microcontroller would doom the 32-bit product to failure in any competitive market.

Building working systems that interface digital logic to the microcontroller demands precise understanding of the electrical loading and timing requirements of an operating microcontroller. Timing and loading considerations are not trivial, an experienced designer is required to configure a system that will work reliably.

v