DESIGN OF A MOBILE BRIDGE

by

Antonis Pouppos

Project Report submitted to

the department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

Project supervisor: <u>Mr P. Tramoundanellis</u> Lecturer in Mechanical Engineering H.T.I

June 1994

PROJECT NO. HIGHER 目的目標

ACKHOWLEDGEMENTS

I wish to express my sincere thanks to my project supervisor Mr P. Tramoundanellis. for his guidance and assistance throughout my project.

I would also like to express my appreciation to all those who in anyway helped me or gave me information relevant to this project.

Finally I would like to express my thanks and appreciation to my sister who typed me the diploma project.

POUPPOS ANTONIS HTI

ABSTRACT

This project deals with the design of a mobile bridge. It is arranged in the following eighteen chapters.

<u>Chapter 1:</u> Introduction to the problem, terms, conditions and decisions.

Chapter 2: Investigation into mobile bridges.

Chapter 3: Introduction to military bridges.

<u>Chapter 4:</u> Introduction to bridge foundations, reference only to the one kind. Also reference to the factors that influence bridge instability.

<u>Chapter 5:</u> Summary for the construction of S.F.D and B.M.D.

- <u>Chapter 6-7:</u> Design of the structure (strength design), calculations for the construction of S.F.D. and B.M.D. of the main members, design of the main members. Calculations for the construction of S.F.D and B.M.D and selection of the small channels.
- <u>Chapter 8:</u> Estimation of the maximum deflection of the bridge members using Macalay's method, estimation of the required bridge angle, calculation of the force which is exerted along it's length and design of the railings.
- <u>Chapter 9:</u> Design of the junctions that will span the two moving parts of the bridge.

- <u>Chapter 10:</u> Design and configuration of the 3 layers that will form the continuous deck of the bridge.
- <u>Chapter 11:</u> Design of the junctions that will span the bridge on the bridgelayer.

<u>Chapter 12:</u> Estimation of the total bridge weight.

Chapter13-14-15:

Hydraulics - Reference in general to the parts of a hydraulic system, some important information for the hydraulic oil and estimation of the hydraulic pressure required to extend the mobile bridge from it's original position.

Chapter 16: Maintenance and service instructions, instructions to the user.

Chapter 17: Cost analysis of the system.

Chapter 18: Bridge building terminology.

CONTENTS

				page
Abstract	n 19			
Introduc	ction			1
CHAPTER	1	•	Introduction to the problem	
	1.1	•	Terms and Conditions	2
	1.2	•	Decisions	2
CHAPTER	2	•	Investigation into Mobile Bridges	9
	2.1	•	Movable bridges	9
	2.2	•	Drawbridge	10
	2.3	•	Bascule bridge	10
	2.4	•	Vertical lift bridge	11
	2.5	•	Swing bridge	12
	2.6	6 9	Pontoon	13
	2.7	•	Epilogue	13
CHAPTER	3	:	Introduction to Military bridges	15
	3.1	:	Military bridges	15
	3.2	:	Trestle bridge	17
	3.3	:	Cribwork bridge	17
	3.4	:	Pile bridge	17
	3.5	:	Girder bridge	17
	3.6	:	Bridge vibration	17
	3.7	•	Assumptions	17
	3.8	:	What is mean by bridge vibration	18

CHAPTER	4	0	Introduction to bridge foundations	19			
	4.1	9 8	Preliminary	19			
	4.2	0 9	Bridge Piers	19			
	4.3	5	Scour				
	4.4	e 9	Wave actions	19			
	4.5	5 6	Ice action	20			
	4.6	9 9	Piers protection	20			
	4.7	•	Constructing the bridge foundations				
			below water	20			
	4.8	•	Principle of operation	21			
СНАРТЕВ	5	•	Summary for the construction of				
	5	•	S.F.D and B.M.D	22			
	5.1	:	Summary	22			
	5.2	-	B.M Sign convection	22			
	5.3	•	S.F. Sign convection	23			
	5.4		Factor of safety - Allowable				
			working stress	23			
	5.5	:	Shear stress distribution of				
			a channel	23			
	5.6	•	Bending stress distribution	24			
			and the second				
CHAPTER	6		Design of the structure	25			
	6.1	:	Strength design	25			
	6.2	;	Selection / design of the				
			main members	25			
	6.3	:	Calculation for the design load				
			that the main members will receive	25			
	6.4	;	Calculations for the construction				
			of S.F.D and B.M.D for the main				
			channels	26			
	6.5		: Epilogue	31			
	6.6		: Selection of the main members	32			

	6.7	0 6	Design of the main members	33
	6.8	9 9	Estimation of generated stresses	36
	6.9	0	Checking for elastic failure using	
			the shear stress criterion (tresca)	38
	6.9.1	•	Representation of the stresses using	
			Mohr's circle	39
CHAPTER	7		Design of the small channels	40
	7.1		: Calculation of the design load	
			that the small channels will receive	40
	7.2		: Calculations for the construction o	f
			S.F.D and B.M.D for the loading of	
			the small channels	41
	7.3	:	: Selection of the small channel	42
	7.4	:	Estimation of generate stresses	43
	7.5		: Checking for failure using the	
			maximum shear stress theory(tresca)	45
	7.6		: Representation of the stresses usin	g
			the Mohr's circle	45
CHAPTER	8		: Macaulay's Method	46
	8.1		: Preliminary	46
	8.2		: Estimation of the max. deflection	
			of the main members	46
	8.3		: Estimation of the maximum deflection	n
			of the small channels	46
	8.4		: Estimation of required bridge	
			angle in order to sit on the	
			terrain	52
	8.5		: Calculation of the force which	
			is exerted along the bridge length	
			when the bridge sits on the terrain	53

0	Design	of the	railings
---	--------	--------	----------

8.6

.

CHAPTER 9	0 0	Design of the junctions that	
		will span the two moving parts	
		of the bridge	56
9.1	0 0	Preliminary	56
9.2	•	Check for possible failure of	
		the parts of the junctions	59
9.3	•	Check for possible failure of the	
		bar	60
9.4	:	Check for possible failure of the	
		brackets	61
9.5	•	Check for possible failure of the	
		bend	62
9.6	*	Check for possible failure at the	
		hole of the bend	63
9.7	:	Check for possible failure of	
		the plate	64
9.7.1	•	Design of the weld of the plates	
		on top of the low flange of the	
		main members	65
9.7.2	:	Design of the weld of the brackets	
		on top of the plates	67
9.8	;	Estimation of the distance required	
		to provide the sufficient clearance	
		between the channel faces	68
9.8.1	•	Selection of fits and holes	69
9.9	:	Diameters of the insinsions	
		choosing the correct circlips	71

53

CHAPTER 10	: Design and configuration of the	
	3 layers that will form the continue	bus
	bridge deck	72
10.1	: Preliminary	72
10.2	: Checking for failure of the deck	
	(layer 1) due to the exerted weight	
	of the armoured vehicle	73
10.3	: Design of the rectangural bars	
	served as security at the middle of	Ê
	the bridge	74
10.4	: Check for possible failure of the	
	bars	75
10.5	: Design of the weld of the rectangu	lar
	bars on the outside surface on the ma	ain
	members	76
10.6	: Selection of bolts	76
10.7	: Reference to failure due to shear	
	tear-out	79
10.8	: Design of the weld of the small	
	channels at the inside face of the	
	webs of the main members	79
CHAPTER 11	: Design of the junctions that will	
	span the bridge on the bridgelayer	83
11.1	: Preliminary	83
11.2	: Check for possible failure of the	
	parts that will join the bridge on	
	the bridgelayer	84
11.3	: Check for possible failure of the	
·	shaft	85
11.4	: Check for possible failure of the	
	rectangular bar	86

.

	11.5	9 9	Check for possible failure of the	
			brackets	87
	11.6	0 9	Selection of the circlips	87
	11.7	0 0	Selection of fits and diameters	88
	11.8	9 0	Design of the weld of the brackets	
			on the edges of the bridgelayer	89
	11.9	:	Design of the weld of the	
			rectangular bars on the outside	
			surface of the webs of the main	
			members	90
CHAPTER	12	•	Estimation of the total bridge	
			weight	92
	12.1	6 6	Preliminary	92
	12.2	•	Estimation of the weight of the	
			main members	92
	12.3	:	Estimation of the weight of the	
			small channels	93
	12.4	:	Accertainment of the weight of	
			the small channels using the	
			formula	93
	12.5	:	Estimation of the weight of the	
			aluminium sheet plate	94
	12.6		Estimation of the weight of the	
			rubber sheet	94
	12.7	:	Estimaton of the weight on the	
			steel sheet plates	94
	12.8		: Estimation of the total bridge	
			weight	95

CHAPTER	13	•	Hydraulics	96
	13.1	9 9	Hydraulic cylinder	96
	13.2	•	Single acting cylinder	96
	13.3	•	Double acting cylinder	97
	13.4	0 9	Control valve	98
	13.5	•	Pressure relief valve	99
	13.6	•	Hydraulic oil tank	100
	13.7	9 9	Hydraulic pump	101
	13.8	:	Oil filter	102
CHAPTER	14	•	Some important information	
			for the hydraulic oil	103
	14.1	:	Hydraulic oil	103
	14.2	•	Consequences of low viscocity	103
	14.3		Consequences of high viscocity	104
	14.4	•	Important properties of oil	104
	14.5	:	When choosing the viscocity	
			of oil	104
1	.4.6	:	Good lubrication property	105
1	.4.7	:	Oil would solidify in cold	
			weather	105
1	.4.8	:	Protection of the hydraulic	
			system against rusting	106
1	4.8.1	:	Emulsified oil causes troubles	106
1	.4.8.2	•	Bubbles are mishievous	107
1	4.8.3	:	How does deterioration occurs	107
1	4.8.4	:	How to prevent deterioration	107
1	4.8.5	:	Several suggestions to prevent	
			deterioration	108
1	4.8.6	:	Cleanliness	108
1	.4.9	•	Viscocity should make less change	3
			with oil temperature change	108

.

CHAPTER	15	•	Estimation of the bydraulic
			pressure required to extend the
			mobile bridge from it's original
			position 110
	15.1	\$ •	Preliminary 111
	15.2	•	First case 111
	15.3	5 0	Second case 112
	15.4	0 9	Third case 113
	15.5	•	Selection of pump 114
	15.6	•	Design of the hydraulic
			system of top base underneath
			the small channel 116
	15.8	•	Design of the secondary
			hydraulic system 117
	15.9	:	Selection of hydraulic hoses,
			fittings and adapters 119
CHAPTER	16	•	Maintenance and service
			instructions 120
	16.1	•	General 120
	16.2	:	Junctions maintenance 120
	16.3	:	Deck maintenance 120
	16.4	:	Instructions to the user 121
	16.5	:	Other instructions 122
	16.6	:	Before use 122
	16.7	;	Hydraulics maintenance 123
CHAPTER	17	:	Cost analysis of the system
	17.1	:	Preliminary
	17.2	:	Material costs
	17.3	:	Maintenance costs
	17.4	:	Labour costs
	17.5	:	Total costs
CHAPTER	18	:	Bridge building termonology 124

Conclusions References Appendices Drawings