HIGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING COURSE DIPLOMA PROJECT

DEVELOPMENT OF AN ELECTRONIC TIME KEEPING DEVICE

E/1006

CHRISTOS GEORGIADES

JUNE 1996

DEVELOPMENT OF AN ELECTRONIC TIME KEEPING DEVICE

Project report submitted by

CHRISTOS GEORGIADES

to the

Higher Technical Institute

Nicosia, Cyprus

in partial fulfilment of the requirements

for the Diploma of

TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

JUNE 1996

2573

+

CONTENTS.

ACKNOWLEDGEMENTS

ABSTRACT	
INTRODUCTION	
1. PROJECT PROPOSAL	r
2. LITERATURE SURVEY	
2.1. Mechanical Timers	1
2.2. Electronic Timer Based on Discrete IC Logic	,
2.3. Timer Based on Calendar IC and Keypad Scanner)
2.4. Electronic Timer Based on Radio Reception9	ł
2.5. Electronic Timer Based on Computer Interface1	0
2.6. Electronic Timer Based on Microcontrollers1	0
2.6.1. Microcontrollers	1
3. ARCHITECTURAL DESIGN	3
3.1. Electronic Timer Block Diagram	3
3.2. Block Diagram Breakdown	5
3.2.1. The Microcontroller	5
3.2.2. Address and Data Bus Demultiplexing	8

÷

3.2.3. Data Storage and Controlling	20
3.2.4. Display Interface	20
3.2.5. Keypad Interface	21
3.2.6. Power Supply	23
4. SOFTWARE DESIGN	25
4.1. Main Program Basic Operation	25
4.2. Keypad Operation	28
4.3. Override Function Button	30
4.4. Fire Alarm Function Button	31
4.5. Earthquake Alarm Function Button	32
4.6. The Change Time Function Button	34
4.7. The Change Date Function Button	36
4.8. The Interrupt Based Calendar Function	38
4.9. The Check Date Table Function	40
4.10. The Check Time Table Function	42
5. HARDWARE TESTING AND RESULTS	44
6. OPERATIONAL TESTING AND RESULTS	46
	•
6.1. The Set Time Function	46
6.2. The Set Date Function	47
6.3. Special Function Buttons	48

.

6.3.1. The F	Fire Alarm Button
6.3.2. The E	Earthquake Alarm Button 49
6.3.3. The E	Sell Override Button
6.3.4. View	ing all Settings
7. GENERAL INFO	RMATION
8. CONCLUSIONS	
9. SUGGESTIONS	FOR FURTHER WORK
9.1 Improvements	
BIBLIOGRAPHY	
REFERENCES	
APPENDICES	
Appendix I	: Electronic Timer Circuit Design.
Appendix II	: Electronic Timer Design PCB Foils.
Appendix III	: Data Sheets.
Appendix IV	: Electronic Timer Software.

+

LIST OF FIGURES.

Figure 3.1.	Electronic Timer Block Diagram14
Figure 3.2.1.1.	The 8031 Block Diagram 15
Figure 3.2.1.2.	The 8031 Pin Configuration16
Figure 3.2.1.3.	The 8031 On-Chip Data Memory18
Figure 3.2.2.	Address and Data Bus
	Demultiplexing Circuit 19
Figure 3.2.5	Matrix Port Connection
Figure 3.2.6.	Power Supply and Relay Control Circuitry 24
Figure 4.1.1.	Main Program Flow Chart27
Figure 4.1.2.	The Flow Chart of the
	Browser Function Button
Figure 4.2.	Flow Chart of Keypad Operation29
Figure 4.3.	The Override Function Flow Chart
Figure 4.4.	The Fire Alarm Function Flow Chart
Figure 4.5.	The Earthquake Alarm Flow Chart
Figure 4.6.	Flow Chart of Change Time Function35
Figure 4.7.	Flow Chart of Change Date Function
Figure 4.8.	The Flow Chart of the Interrupt Operated
7	Calendar Function
Figure 4.9.	Flow Chart of Check Date Function 41
Figure 4.10.	Flow Chart of Check Time Function43

LIST OF TABLES.

Table 3.2.1.1.	8031 Pin Information	17
1 able 5.2.1.1.	8031 Pin information	17

ACKNOWLEDGEMENTS.

I would like to express my appreciation to all the people who helped me in the completion of this project.

Special thanks to my family for their endless support and understanding, to my brother for helping me and giving me ideas on the hardware design, and my sister for typing part of my project report.

I would also like to thank my cousin Christopher for standing by me at this difficult and important time in my life. By sharing with me his knowledge and ideas, many problems were overcome and finally this project was completed successfully.

My sincere thanks to the Director of COMULAB TECHNOLOGY, Mr. Stan Topping as well as to the rest of the staff, for sponsoring part of this project and supporting me with valuable equipment and information.

I would also like to thank my supervisor Mr. C. Theopemptou for his guidance and support throughout the duration of the project development.

Finally I would like to thank my girlfriends Sonia and Tatiana as well as my friend Sophia for their support and encouragement.

ABSTRACT.

The aim of this project was to develop an electronic timer for the use of scheduling the times and dates at which the school bell is to ring. The timer allows the user to have full access to the changing of the time and date as well as additional features such as overriding the pre-set bell ringing times for emergency purposes like fire and earthquake hazards where each can be distinguished by an appropriate ringing cycle.

Full visibility of the timer information of time date and ringing status can be seen on a single line character display as user information. The design also is of reasonable compactness since it is to be used as a simple wall mounted device with limited external connections, (power supply and external control line).

As a conclusion this system was successfully designed having all aforementioned specifications, and performed adequately for the use of controlling the school bell or any other similar application where the timed control of equipment is required.