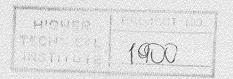
HIGHER TECHNICAL INSTITUTE

NICOSIA – CYPRUS

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A WINDMULL PUMPING SYSTEM FOR IRRIGATION PURPOSES


M/572

DESIGN BY :

EFTHYVOULOU COSTAS

3M2

JUNE 1991

CHAPTER 1

The Nature of the Wind

The circulation of air in the atmosphere is caused by the nonuniform heating of the earth's surface by the sun. The air immediately above a warm area expands, it is forced upwards by cool, denser air which flows in from surrounding areas causing a wind.

The nature of the terrain, the degree of cloud cover and the angle of the sun in the sky are all factors which influence this process. In general, during the day the air above the land mass tends to heat up more rapidly than the air over water. In coastal regions this manifests itself in a strong onshore wind. At night-the process is reversed because the air cools down more rapidly over the land and the breeze therefore blows offshore.

The main planetary winds are caused in much the same way: cool surface air sweeps down from the poles forcing the warm air over the tropics to rise. But the direction of these massive air movements is affected by the rotation of the earth and the net effect is a large counter-clockwise circulation of air around low pressure areas in the northern hemisphere, and clockwise circulation in the southern hemisphere. The strength and direction of these planetary winds change with the seasons as the solar input varies.

Despite the wind's intermittent nature, wind patterns at any particular site remain remarkably constant year by year. Average wind speeds are greater in hilly and coastal areas than they are well inland. The winds also tend to blow more consistently and with greater strength over the surface of the water where there is less surface drag.

Wind speeds increase with height. They have traditionally been measured at a standard height of ten metres where they

1

are found to be 20-25% greater than close to the surface.

At a height of 60m they may 30-60% higher because of the reduction in the drag effect of the earth's surface.

CONTENTS

Pages

CHAPTER 1:

•	
The nature of the wind	1
The power in the wind	2
Generation of electricity (Introduction)	7
The d.c machine	10
The synchronous machine	11
The induction machine	13

CHAPTER 2: WINDMILLS

Horizontal axis windmills	19
The sail windmill	21
Tower mills	22
Multivaned mills	23
Advanced propeller design	25
Vertical axis windmills	28
Savonius type	28
Darrieus type	30
The H type	35

CHAPTER 3:

General specifications for designing a horizontal axis wec. Introduction 37 External Factors 37 Design options 39 Blade control 40 Transmission 44 Blade material 45 Rotor support systems 47 Gearbox design 50 Yaw systems 51

Towers	52
Installation	53
Maintenance	54
Design of the windmill	
Selection of the windmill	55
How it works	56
Selection of windmill equipment	58
Force analysis	61
Nomerelature related to gears	64
Force analysis	67
Tooth stresses	69
Estimating gear size	72
Estimating ft and fr	76
Shaft selection	77
Selection of key for rotor shaft	85
Selection of key for connecting shaft	86
Connecting rod calculating rod	89
Design of connecting rod	90
Derivation of formula	90
Selection of bearings	93
The lite equation	95
Requisite basic rating life	95
Constant bearing load	97
Making the selection	99
Yaw of the windmill	102
Explanation of drawing and dimensioning	106
Cost of the system	106