EFFICIENT UTILISATION OF ELECTRIC

MACHINE DRIVES IN THE INDUSTRY

OF CYPRUS

A THESIS SUBMITTED TO THE UNIVERSITY OF SALFORD IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

BY

EFSTATHIOS MICHAEL BSc (Hons) Eng

Department of Electronic and Electrical Engineering

University of Salford

October 1986

CONTENTS

			Page
ACKNOV	VLEDO	GEMENTS	III
ABSTRA	CT		IA
INTROD	UCTI	ON	1
СНАРТЕ	R 1:	THE EXISTING CONDITIONS OF UTILISATION	7
		OF THE ELECTRIC MACHINE DRIVES	
	Sum	mont.	8
		mary Introduction	9
		Historical analysis of the consumption of	3
	1.0	electricity	10
	1.3		20
		the electricity consuming apparatus	19
	1.4	The existing loading conditions	29
CHAPTER 2:		ENERGY CONSERVATION MEASURES FOR THE	40
		ELECTRIC MOTOR DRIVES- A TECHNOLOGICAL	
		AND FINANCIAL APPRAISAL	
	Sum	mary	41
	2.1	Introduction	42
	2.2	Power Factor Controller	45
	2.3	Reduced Voltage supply	56
	2.4	Energy Efficient Motor	63
	2.5	Proper Sizing an electric motor	68
	2.6	Selection of the appropriate conservation	
		maggira	72

CHAPIE	ıt J.	OF FOUR ENERGY CONSERVATION MEASURES	• •
		OF FOOR ENERGY CONSERVATION MEASURES	
	Sum	mary	78
	3.1	Introduction	79
	3.2	Industrial sector	81
	3.3	Mining and Quarrying	94
	3.4	Manufacture of non metallic products	96
	3.5	Manufacture of food	98
	3.6	Beverage industries	100
	3.7	Manufacture of textiles	102
	3.8	Manufacture of wood	104
	3.9	Manufacture of paper and printing	106
	3.10	Manufacture of chemicals	108
	3.11	Manufacture of rubber, synthetic rubber and	
		plastics	110
	3.12	Manufacture of electrical-mechanical products	112
CONCLU	SION	S	114
REFERE	NCES		117
A DDENID	TV A	Evaluation of the loading conditions of a	
AFFEND	IN A	_	110
A DODDAID	ם עד	three phase motor The consumption of electricity in the	119
APPEND	IX B		105
A DDDND	TV A	dominant industrial subsectors	125
APPEND	IX C	The installed kVA capacity of the electricity	196
A DDDAID	TV D	consuming equipment	136
APPEND	IX D	The loading conditions of the electric motor	1 4 7
A DOTAIN		drives	147
APPEND	IX E	The effects of four energy conservation	150
A DOUGLE	יי עד	measures	158
APPEND	IX F	Electricity Authority of Cyprus industrial tariff	169
APPEND	IY C	Publications	170
UL L PIND	IN U	1 UNICALIOIIS	110

EFFICIENT UTILISATION OF ELECTRIC MACHINE DRIVES IN THE INDUSTRY OF CYPRUS

BY

E MICHAEL

ABSTRACT

In consideration of the characteristics of the Industrial sector of a small and developing economy a study is presented which reveals the state of utilisation of electric machine drives in the industry of Cyprus and examines the possible technological and financial effects from the penetration of specific electricity conservation measures.

Through an analysis of the electricity consumption records and the kVA capacity of the electricity consuming apparatus the state of utilisation of electricity is described in sectoral and subsectoral levels as well as by the form of end use. Thus it was found that 88% of the electrical equipment in use in the Industrial sector are AC machine drives. The subsequent field investigations have described the loading conditions of these motors which indicate an average loading of 51.7%, an overall efficiency of 85% and 11.9 average daily hours of operation.

Four specific energy conservation measures which are likely to be adopted locally are thoroughly discussed through a technological and financial appraisal. The provision of a benefit/cost ratio enables the comparison of the four measures and makes possible the identification of the most economical measure for adoption.

The impact from the penetration of these measures in the Industrial sector and the dominant industrial subsectors are examined taking into account where necessary the risks involved from the electricity price variations and the annual hours of operation. It was generally found that the Power Factor Controller method is rarely financially viable whereas the Energy Efficient motor can be considered as the standard type of drive for certain applications such as compressors and the Reduced Voltage approach and proper sizing of motors produce high rates of return in situations where serious underloading exists.