HEGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

DESIGN AND CONSTRUCTION OF A PROTOTYPE SHOT PEENING MACHINE FOR SURFACE HARDENING

M/810

BY: ANDREOU ANDREAS

JUNE 1998

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN AND CONSTRUCTION OF A PROTOTYPE SHOT PEENING MACHINE FOR SURFACE HARDENING

M/810

ANDREOU ANDREAS

JUNE 1998

DESIGN AND CONSTUCTION OF A PROTOTYPE SHOT PEENING MACHINE FOR SURFACE HARDENING

M/810

by Andreas Andreou

Project Report Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICAL ENGINEER

in

MECHANICAL ENGINEERING

June 1998

ACNOWLEDGEMENT			
SUMMARY			
INTRODUCTION			
CHAPTER 1			
SHOT PEENING TECHNOLOGY			
1.1. SHOT PEENING 1			
1.1.1. The Shot Peening Process	1		
1.1.2. Residual Compressive Stress	2		
1.1.3. Magnitude of Residual Stress	3		
1.1.4. Depth of Residual Stress	4		
1.1.5. Effect of Shot Hardness	4		
1.1.6. Effect of Heat	6		
1.1.7. Load/Stress Profile - Smooth Specimen	7		
1.1.8. Load/Stress Profile - Notched Specimen	9		
1.1.9. Crack Arrest by Compressive Stress	11		
1.2. SHOT PEENING CONTROL	12		
1.2.1. Media Control	13		
1.2.2. Intensity Control	15		
1.2.3. Coverage Control	16		
1.3. SHOT PEENING APPLICATIONS	17		
1.3.1. Aluminum Alloys	17		
1.3.2. Austempered Ductile Iron	17		
1.3.3. Blades	18		
1.3.4. Cavitation Damage	20		
1.3.5. Connecting Rods	21		
1.3.6. Crankshafts	23		
1.3.7. Diaphragm Couplings	24		

Page

1.3.8. Gears	25
1.3.9. Internal Bores and Surfaces	29
1.3.10. Pitting	30
1.3.11. Powder Metallurgy	32
1.3.12. Shafts and Axles	32
1.3.13. Springs	33
1.3.14. Stress Peening or Strain Peening	35
1.3.15. Peening Forming	37
1.3.16. Contour Correction	42
1.3.17. On - Site Shot Peening	43
1.3.18. Work Hardening	43

CHAPTER 2

DESIGN AND CONSTRUCTION 44		
2	. INTODUCTION	44
2	SPECIFICATION OF THE SHOT PEENING	
	PNEUMATIC MACHINE	44
2	. MAIN BODY - CASING	45
2	AXLES AND HOLDERS	46
	2.4.1. Axles	46
	2.4.2. Holders	47
2	HIGH PRESSURE AIR PISTOL - SPECIAL NOZZLE	47
2	CALCULATION OF THE VELOCITY OF THE SHOTS	48

CHAPTER 3

EXPERIMENTAL RESULTS 50		
3.1.	INTRODUCTION	50
3.2.	SHOT PEENING - HARDNESS TEST	50
3.3.	MICROSCOPICAL EXAMINATION	52
3.4.	CONCLUSIONS	56

CHAPTER 4

COST ANALYSIS	57
4.1. INTRODUCTION	57
4.2. DIRECT MATERIALS COST	57
4.3. DIRECT LABOUR COST	59
4.4. PRODUCTION OVERHEADS	59
4.5. PRIME OR DIRECT COST	60
CONCLUSION	61
REFERENCES	

DRAWINGS/PARTS LIST

AKNOWLEDGEMENTS

The author would like to express his gratitude and thanks to his Project Supervisor, Dr. L. Lazari, Lecturer in Mechanical and Marine Engineering Department of H.T.I. for his guidance and assistance.

He would also like to thank Mr. C. Andreou for making his workshop available to him and for his constructive comments and encouragement during the construction of the Shot Peenign Pneumatic Machine.

He would also like to thank Mr. C. Christodoulou laboratory assistant in the Mechanical Engineering Department of H.T.I. for his help on the experiments in metallurgy laboratory.

Finally, he would like to express his thanks to Miss Chr. Themistocleous for her help in searching through Internet and in collecting important information about his project. Also, he would like to thank her for typing the project.

ANDREAS ANDREOU 3rd year student in Mechanical Engineering H.T.I.

SUMMARY

Design and construction of a Prototype Shot Peening Machine for Surface Hardening.

by Andreas Andreou

The purpose of this project was to study existing technology on shot peening design and construct a shot peening pneumatic system for the surface hardening of steel shafts.

Firstly, all information through the Internet was collected to study about this existing technology. Then a simple shot peening pneumatic system was designed with all drawings and calculations. Also, all parts of the shot peening pneumatic system was assembled and tested.

Finally, some experiments were performed and showed how steel shafts are hardened.

This project is divided into four chapters:

CHAPTER 1	Shot Peening Technology
CHAPTER 2	Design and Construction
CHAPTER 3	Experimental Results
CHAPTER 4	Cost Analysis

INTRODUCTION

In engineering, many steel components such as crankshafts, connecting rods, gears must process hard and wear - resistant surfaces and at the same time, tough, shock - resistant cores. A low carbon steel will be tough but soft, whilst a high carbon steel will be hard when suitable heat - treated but will also be brittle.

To achieve the above combination of properties there are tow processes: (i) carburising process and (ii) the Nitriting.

In carburising process the surface of the part is enriched the carbon content and as a result the surface hardness increases. This is done by heating the component in a carbonaceous material (rich in C) at about 900°C where the carbon atoms in the F.C.C. austenite phase of the surface, this increasing surface carbon content.

In the nitriting process components are heated at 500°C in an atmosphere of ammonia (NH3) which dissociates to produce nitrogen. Long soaking times are used depending on the depth or case required. Surface hardness is due to the hard nitrides formed on the surface.

In the next chapters the existing technology of a shot peening process for surface hardening is shown.