HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF A HOTEL

ADONIS KALLIS (E/955) JUNE 1995

DESIGN OF THE ELECTRICAL SERVICES OF A HOTEL

BY

ADONIS KALLIS

Project Report

Submitted to the department of Electrical Engineering of the Higher Technical Institute Nicosia, Cyprus in partial Fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

June 1995

2434

CONTENTS

		Page
ACKNOWLEDGEMENTS		5
ABSTRACT		6
SYMBOLS AND ABBREVIATIONS		7
INTRODUCTION		8
CH	APTER 1	
ILL	UMINATION	
1.1	INTRODUCTION	11
1.2	UNITS AND DEFINITIONS	11
1.3	ELECTRIC LAMPS	12
1.4	RULES FOR ENERGY EFFICIENT LIGHTING	13
1.5	METHODS OF ILLUMINATION CALCULATIONS	14
1.6	ACTUAL DESIGN	16
1.7	TYPE OF FITTING USED	18
	RESULTS OF ILLUMINATION DESIGN	19
CH	APTER 2	
LIG	HTING AND POWER REQUIREMENTS	
2.1	GENERAL	31
2.2	FUNDAMENTAL REQUIREMENTS FOR SAFETY	31
2.3	DESIGN PROCEDURE	32
2.4	ACTUAL DESIGN PROCEDURE	35
	RESULTS OF LIGHTING CIRCUITS	45
	RESULTS OF SOCKET OUTLETS CIRCUITS	48
	FAULT LEVEL CALCULATIONS	61

CHAPTER 3

SAFETY AND EARTHING

3.1	GENERAL	66		
3.2	SITUATIONS WHERE SPECIAL PRECAUTIONS ARE USED	66		
3.3	DEFINITIONS	67		
3.4	PROTECTION FOR SAFETY	68		
CHAPTER 4				
TELEPHONE DISTRIBUTION				
4.1	DEFINITIONS	72		
4.2	CONDUITS AND CONDUIT SIZES	73		
4.3	INSTALLATION OF THE DISTRIBUTION CASES	74		
4.4	INSTALLATION OF TELEPHONE LINES	75		
4.5	LIST OF CONNECTIONS	78		
CONCLUSIONS				

APPENDICES

REFERENCES

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to my project supervisor Mr Michael for his guidance and assistance given throughout the project period.

Also I would like to thank all those who in any way helped me and gave me courage during the design period of this project.

ABSTRACT

This project deals with the design of the Electrical Services of a Hotel. The electrical services are the Lighting, power and telecommunication installation. This work has been divided into chapters as follows:

CHAPTER 1: This chapter deals with the illumination design and in accordance with the CIBS code we can find the level of illumination of the various areas.

CHAPTER 2: This chapter deals with the power and lighting circuits in accordance with the IEE regulations as currently amended and the local EAC conditions of supply.

CHAPTER 3: This chapter deals with safety and earthing.

CHAPTER 4: This chapter deals with the telephone distribution design of the hotel in accordance with CYTA requirements.

The necessary pictures, catalogues and information are given in the appendices.

The drawing of the electrical installation of the hotel are also included.

SYMBOLS AND ABBREVIATIONS

- MDB Main Distribution board
- DB Distribution board
- AC Alternative current
- DC Direct current
- MDC Main Distribution Case
- DC Distribution case
- IEE Institution of Electrical Engineers
- EAC Electricity authority of Cyprus
- MCB Miniature circuit breakers
- MCCB Moulded Case Circuit Breakers
- RCCB Residual Current Circuit Breakers
- PVC Polyvinyl Chronide
- CPC Circuit protection Conductor
- CSA Cross Sectional Area
- SWA Steel Wire Armoured
- EFLI Earth fault loop impedance
- PF Power Factor
- CCT Circuit
- VD Voltage Drop
- F01L1 Lighting circuit L1 supplied by Distribution board of flat 01 in the Ground Floor.
- S/O Socket Outlet

INTRODUCTION

This project deals with the design of the Electrical Services of a hotel.

It consists of the ground floor, the first floor, the second floor and the third floor.

The whole installation is carried out in accordance to the following requirements:

- (1) The 16th edition of the IEE wiring regulations and additional local regulation.
- (2) EAC Conditions of supply
- (3) C.I.B.S. code for interior lighting
- (4) Interior lighting design.
- (5) CYTA regulations

ASSUMPTIONS

- (1) Supply Voltage: 415Vrms, 50Hz, TT earthing system.
- (2) Wiring method: PVC conduit (method 3)
- (3) Earth conduit carries one cct only, so grouping factor Cg=1

(4) Ambient temperature is assumed to be 30°C so ambient temperature factor Ca=1.

- (5) Thermal insulation is not used, so insulation factor Ci=1.
- (6) External earth fault loop impedance= 0.5Ω