HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

DESIGN OF A DEMONSTRATION KIT FOR HTI IST YEAR MECHANICAL COURSE

M. 812

BY: TRYFONAS CHRISTOPHOROU

JULY 1998

DESIGN OF A DEMONSTRATION KIT FOR HTI 1st YEAR MECHANICAL COURSE

by

Tryfonas Christophorou

Project Report Submitted to

the Department of Mechanical Engineering

of the Higher Technical Intitute

Nicosia Cyprus

in partial fulfillment of the requirements

for the deploma of **TECHNICIAN ENGINEERING**

in

MECHANICAL ENGINEERING

July 1998

project.rec(57)

i feel the need to thanks some people whose care, help me to accomplish this project.

-My friend <u>Theodora Krashia</u> : for typing it

-my supervisor mr. Theodoros Symeou

-mr. <u>Papavasiliou Michalis</u> : for leding me work on his factory machine -my friends <u>Chrisostomos and George Deliyianis</u> for leding me to use their p.c.

CONTENTS

Chapter1: Introduction

page

	•The need	1
	•The purpose of designing and constraction of audiovisual aids	2
	•Preface	3
	•Vectors: The rise of vector analysis	4
Chapter2:	Demonstration kit components	
	•Demonstration bort	6
	•Wooden stands	6
	•Inclined planes	6
	•Pulley-sets	7
	•Comp. Pulley	7
	•Rolling mass	7
	•Friction plate	7
Chapter3:	Demonstration No.1 (resolution of vectors)	
	•Objective	8
	•Apparatus	8
	•Theory	9
	•Procedure	11
	•Calculations	12
Chapter4:	Demonstration No.2(forces on an inclined plane)	

•Objective	14
•Apparatus	14

•Theory	15
•Procedure	18
•Calculations	19

Chapter5: Demonstration No.3(torque)

•Objective	24
•Apparatus	24
•Theory	25
•Procedure	26
•Calculations	27

Chapter6: Demonstration No.4(Atwood machine)

•Objective	28
•Apparatus	28
•Theory	29
•Procedure	31
•Calculations	32

Chapter7: Demonstration No.5(friction and friction angle)

•Objective	34
•Apparatus	34
•Theory	35
•Procedure	39
•Calculations	40

Chapter8: Demonstration No.6(compination of linear and circular motion)

•Objective	42
•Apparatus	42

•Theory	43
•Procedure	46
•Calculations	47

Chapter9: Demonstration No.7(Compination forces on iclined plane,

riction and torque)

•Objective	4	9
•Apparatus	4	9
•Theory	5	0
•Procedure	5	3
•Calculations	5	4

Chapter10: cost analysis

cost analysis

58

THE NEED

First – time engineering students have enough in their mind without unnecessary frustration in the lab so a need arise for a system witch must be able to eliminate many of the problems that are common in static's experiment.

Also it must be convenient for the instructor to use it in class and save time in order to make students understand these principles whose going to be demonstrate.

This visual aid must be able to denominated resolution of vectors, static friction, torgues, forces on an inclined plane and some combinations of the above.