HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COLIRSE

DIPLOMA PROJECT

DESIGN OF A SOLAR HEATING SYSTEM FOR A SWIMMING POOL

M/956

SHADI ALHALABI

JUNE 2003

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERIN COURSE

DIPLOMA PROJECT

DESIGN OF A SOLAR HEATING SYSTEM FOR A SWIMMING POOL

M/956

SHADI ALHALABI

JUNE 2003

HIGHER PROJECT NO.
TECHNICAL 3431

CONTENTS

Acknowledgement Summary Introduction

Chapter 1:	
Solar heating theory	pg.1
Direct beam radiation	pg.1
Reflected radiation	pg.1
Diffuse radiation	pg.1
Solar collectors' theory	pg.2
Collector efficiency	pg.2
Absorber plates	pg.2
Cover plates	pg.3
Insulation	pg.4
Collector box	pg.4
Problems with flat-plate collectors	pg.4
Leaks	pg.4
Corrosion	pg.4
Freezing	pg.5
Active Vs Passive Solar system	pg.6
Arrangements of collectors	pg.7
Series arrangement	pg.7
Parallel arrangement	pg.8
Mixed arrangement	pg.9
Overshadowing	pg.10
Chapter 2: Conventional heating theory	
Introduction	pg.11
How to heat a swimming pool with the same boiler	
that is used to heat a house	pg.13
Chapter 3: Solar heating system	
General introduction	pg.14
Why should I heat my swimming pool with solar?	pg.14
Solar heating systems	pg.15
System 1	pg.15
System 2	pg.16
System 3	pg.17
System 4	pg.18
Assumption for calculate the head demand	ng 20

Chapter 4: Heat requirement	
Area calculation of the pool	pg.21
Surface area	pg.22
Area of the wall	pg.22
Area of the bottom	pg.24
Volume of the pool	pg.25
Heat losses	pg.26
Evaporation losses	pg.26
Calculation of evaporation losses	pg.26
Radiation losses	pg.27
Calculation of radiation losses	pg.27
Convection losses	pg.28
Calculation of convection losses	pg.28
Conduction losses	pg.29
Calculation of conduction losses	pg.29
Heat gain	pg.32
Calculation of heat gain	pg.32
Heat required	pg.33
Calculation of the heat required	pg.33
Chapter 5: Equipment and pipe sizing	
Turn over period	pg.35
Filtration rate	pg.36
Solar panels output	pg.36
Sizing of solar panels	pg.37
Arrangement of solar panels	pg.37
Number of skimmers	pg.38
Number of inlets	pg.39
Number of vacuum points	pg.39
Number of main drains	pg.39
Pressure drops	pg.40
Pool circuit	pg.40
Pressure drop in straight pipeline	pg.40
Pressure drop in fitting pipeline	pg.41
Pressure drop in filter pipeline	pg.41
Total pressure drop	pg.41
Pump head	pg.41
Collectors' circuit	pg.42
Pressure drop in straight pipeline	pg.42
Pressure drop in fitting pipeline	pg.42
Pressure drop in collectors' pipeline	pg.42
Pressure drop in heat exchanger pipeline	pg.42
Total pressure drop	pg.42
Pump head	pg.42

Chapter 6: Selection of equipments	
Re-circulating pumps	pg.44
Filter	pg.44
Main drain	pg.44
Skimmer	pg.44
Inlet fittings	pg.45
Pool system controller	pg.45
Chapter 7: Cost estimation	
Calculation of total piping cost	pg.47
Cost estimation of solar system	pg.47
Chapter 8:	
Conclusion	pg.48
References	pg.49
Appendix	pg.50
	P3.00

ACKNOWLEDGEMENT

I would like to dedicate this project to all my best friends and especially to *Alexandra*, *Shadi*, Costas, and *Toffic* for their help to accomplishment of this project.

Furthermore, I would like to express my deep thanks to my project supervisor **Dr.**I. MICHAELIDES for his assistance and guidance for the completion of the project.

Finally, I would like to thanks *GOD* for displace the missing of my family to a believe and trust in my self.

SUMMARY

The objective of this diploma project is to design a solar heating system for a swimming pool located in Nicosia, to achieve this and design it successfully;

The following steps should be made:

- 1. To make the appropriate calculations of the heat requirement for the water heating of the swimming pool.
- 2. To give detail description of all the parameters affecting the Solar system, also describe the methods that are currently used for the collection and distribution of low-temperature solar energy.
- 3. Design an appropriate solar system to satisfy the heat requirement of the swimming pool.
- 4. To determine the optimum area of the solar collector, pipe sizing, and other equipment that are involved, including all necessary instrument and controls.
- 5. To prepare detailed drawings and diagrammatic layout showing the system layout and components.
- 6. Conduct a cost-estimation.

General Introduction

It is interesting that our society has been skilful in locating and learning to exploit a variety of energy recourse.

But we have much less skilful in predicting the social and environmental implication of our energy use patterns.

As we enter the petroleum age earlier this century it was not foreseen what affect the massive use of petroleum in any country, nor was effect of the economy foreseen of having to relay on other nation for a fuel supplies.

Further more, when a nuclear power came on our scene it had been expected to be safe and inexpensive. I have been surprise that nuclear generating plants proved neither safe nor inexpensive to maintain.

Even thought we know the type of energy use now days it harms the environment, tears up the landscape, rises the temperature of our atmosphere and result in release of countless tons of pollution is still present type of energy. Any way, like it or not we will soon have to turn from petroleum as our recourse to other recourse we can relay on it to fulfil our energy needs, number of options will be suggested for our future recourse which is:

- 1. Coal
- 2. Oil shale and tar sands
- 3. Nuclear energy
- 4. Fusion energy
- 5. Renewable recourse

Actually, all the options above except the renewable recourse depend on fuel and mineral deposit that again can be depleted. But the last option can be used as long as the solar system in our plant exists. Solar energy is one of the most notable recourses

it has been much in the news and widely discussed in resent years, for allowing the sun to be one of our major sources for our daily needs.

The sun is not complicated recourse; it is within the ability of most of us to design a variety of system to our homes.

♦ I think if we believe in the promise and importance of solar energy, so it is our problem to learn more about this source and to spread it in whatever way we can to make the solar society a reality.