# HIGHER TECHNICAL INSTITUTE NICOSIA - CYPRUS

CIVIL ENGINEERING COURSE

DIPLOMA PROJECT SITTE INVESTIGATION C/834

LESTAS A. CHARALAMBOS

JUNE 1998

## **HIGHER TECHNICAL INSTITUTE**

#### **NICOSIA - CYPRUS**

#### **CIVIL ENGINEERING COURSE**

#### **DIPLOMA PROJECT**

# **SITE INVESTIGATION**

#### C/834

#### **LESTAS A. CHARALAMBOS**

**JUNE 1998** 



By:

#### LESTAS A. CHARALAMBOS

**Project Report** 

Submitted to

The Department of Civil Engineering

of The Higher Technical Institute

Nicosia - Cyprus

In partial fulfilment of the requirements

for the diploma of

# **TECHNICIAN ENGINEER**

in

## **CIVIL ENGINEERING**

**JUNE 1998** 



# TABLE OF CONTENTS

| ACKN                      | NOWLEDGEMENTS                                                             |           |
|---------------------------|---------------------------------------------------------------------------|-----------|
|                           | MARY                                                                      |           |
| Chapter One: INTRODUCTION |                                                                           |           |
|                           | Introduction                                                              |           |
| 1.1                       |                                                                           |           |
|                           | Objectives of Site Investigation                                          |           |
| 1.2                       | Site Investigation related with Civil Engineering                         | _ 4       |
| 1.3                       | Types of Ground Investigation                                             | _ 6       |
| Chapt                     | er Two: FORMATION OF SOILS                                                | 8         |
|                           | General                                                                   |           |
|                           | er Three: PLANNING OF SITE INVESTIGATION                                  |           |
|                           | Introduction                                                              |           |
|                           |                                                                           |           |
|                           | Stages of a Site Investigation                                            |           |
| 3.2 ]                     | Points to be considered                                                   | . 17      |
| _                         | er Four: METHODS & EQUIPMENT OF GROUND INVESTIGATION_<br>Introduction     |           |
| <b>4.1</b> I              | Points to be considered                                                   | 19        |
| <b>4.2</b> I              | Methods of sub-surface exploration                                        | 20        |
| 4.2                       | 2.1 EXPLORATION IN SOILS                                                  | _22       |
|                           | 4.2.1.1 Trial Pits                                                        | _23       |
|                           | 4.2.1.2 Large bored shafts                                                | _24       |
|                           | 4.2.1.3 TV and borehole cameras                                           | _24       |
|                           | 4.2.1.4 Hand or portable augers                                           |           |
|                           | 4.2.1.5 Percussion Boring   4.2.1.6 Mechanical Augering                   | _28<br>31 |
|                           | 4.2.1.7 Probing                                                           | 34        |
|                           | 4.2.1.8 Wash Boring                                                       | 36        |
|                           | 4.2.1.9 Rotary Drilling                                                   | _38       |
| 4.2                       | 2.2 ROCK EXPLORATION                                                      | _40       |
| 3                         | 4.2.2.1 Rotary Coring                                                     | _41       |
|                           | 4.2.2.2 Drilled Shafts                                                    | _41       |
|                           | 4.2.2.3 Test pits                                                         | _41       |
| 4.2                       | 2.3 EXPLORATION IN WATER<br>2.4 GEOPHYSICAL METHODS OF SITE INVESTIGATION | _43       |
| 4.4                       | 4 2 4 1 Flectrical resistivity                                            | _48<br>50 |
|                           | 4.2.4.1 Electrical resistivity                                            | _50       |
|                           | 4.2.4.3 Seismic methods                                                   | 52        |
|                           | 4.2.4.4 Magnetic methods                                                  | 52        |
| 3                         | 4.2.4.5 Borehole logging                                                  | _52       |
| 4.2                       | 2.5 IN SITU TESTING                                                       | _53       |

# **TABLE OF CONTENTS**

| 54       |
|----------|
| 54       |
| 55       |
| 58       |
| 60       |
| 63<br>67 |
| 69       |
| 72       |
| 72       |
| 73       |
| 73 75    |
| 75<br>75 |
| 76       |
| 78       |
| 80       |
| 81       |
| 81       |
| 82       |
| 89       |
| 92       |
| 95       |
| 95       |
| 98       |
| 101      |
|          |
| 101      |
| 101      |
| 104      |
| 106      |
| 100      |
|          |

# TABLE OF FIGURES

| Fig. 1. 1 Works related with Civil Engineering construction and site investigation                                               | 5   |
|----------------------------------------------------------------------------------------------------------------------------------|-----|
| Fig. 3. 1 Construction of piles for a proposed bridge                                                                            |     |
| Fig. 3. 2 Stages of a Site Investigation                                                                                         |     |
| Fig. 4. 1 Borehole Layout                                                                                                        | 21  |
| Table 4. 1 Application of the methods of soil exploration                                                                        |     |
| Fig. 4. 2 Mechanical Excavator                                                                                                   | 22  |
| Fig. 4. 3 Borehole Camera                                                                                                        | 26  |
| Fig. 4. 4 Hand-operated Augers                                                                                                   | 20  |
| Fig. 4. 5 (a) Percussion boring rig (b) Shell (c) Clay cutter (d) Chisel                                                         |     |
| Fig. 4. 6 Mechanical Augering                                                                                                    | 32  |
|                                                                                                                                  |     |
| Fig. 4. 7 Classification of Mechanical Augers                                                                                    | 35  |
| Fig. 4. 8 A Mackintosh Probe                                                                                                     | 33  |
| Fig. 4. 9 Wash Boring rig                                                                                                        |     |
| Fig. 4. 10 Rotary Drilling                                                                                                       |     |
| Fig. 4. 11 Destructive Drilling                                                                                                  | 40  |
| Fig. 4. 12 Rotary Core Drilling                                                                                                  |     |
| Fig. 4. 13 Standpipe and Standpipe piezometer installations                                                                      |     |
| Fig. 4. 14 Hydraulic Piezometer                                                                                                  | 46  |
| Fig. 4. 15 Pneumatic Piezometer                                                                                                  | 47  |
| Fig. 4. 16 Sea-water investigations                                                                                              | 49  |
| Fig. 4. 17 Arrangement for a resistivity survey                                                                                  | 51  |
| Table 5. 1 Uses of in situ tests                                                                                                 | 55  |
| Fig. 5. 1 Shear Vane test                                                                                                        | 56  |
| Table 5. 2 Values of clay's hardness                                                                                             | 57  |
| Table 5. 3 N-values related to relative density                                                                                  | 59  |
| Fig. 5. 2 Standard Penetration Test (SPT) equipment                                                                              |     |
| Fig. 5. 3 Dutch cone penetrometer                                                                                                | 61  |
| Fig. 5. 4 Packer permeability tests                                                                                              | 64  |
| Fig. 5. 5 Plate bearing test                                                                                                     | 66  |
| Fig. 5. 6 Menard pressuremeter                                                                                                   | 68  |
| Table 5. 4 Usage of sample quality related to type of soil   Fig. 5. 7 (1) Sector and the sample quality related to type of soil | 71  |
| Fig. 5. 7 (a) Open drive sampler (b) Thin-walled sampler                                                                         | 74  |
| (c) Split-barrel Sampler (d) Stationary piston sampler                                                                           |     |
| Fig. 5. 8 Continuous sampler                                                                                                     | 77  |
| Fig. 5. 9 Bishop sand sampler                                                                                                    | 79  |
| Fig 6. 1 Grading soil chart with grading curves                                                                                  | 83  |
| Fig 6. 2 Water Content determination                                                                                             | 84  |
| Fig 6. 3 Graphical presentation of Atterberg Limits                                                                              |     |
| Fig 6. 4 Cassagrande Plasticity chart                                                                                            | 87  |
| Table 6.1 British Classification System for Engineering Purposes   Ei. 6.5 Standard Stress                                       |     |
| Fig 6. 5 Shear box test                                                                                                          | 90  |
| Fig 6. 6 The unconfined compression test                                                                                         | 91  |
| Fig 6. 7 Triaxial test                                                                                                           | 93  |
| Fig 6. 8 Consolidation test                                                                                                      | 94  |
| Fig 6. 9 Constant head permeability test                                                                                         | 96  |
| Fig 6. 10 Falling head permeability test                                                                                         | 97  |
| Fig 6. 11 California Bearing Ratio test                                                                                          | 99  |
| Fig. 7. 1 Typical borehole record                                                                                                | 103 |
| Fig. 7. 2 Typical soil section                                                                                                   | 105 |
| Fig. 8.1 Rotary Core Drilling in Cyprus)                                                                                         | 108 |
| Fig. 8.2 Geophysical and in situ tests carried out in Cyprus                                                                     | 110 |

#### ACKNOWLEDGEMENT

I would like to express my appreciation to all persons that have in any way contributed to the completion of this project. Thinking of acknowledgements, the greatest thanks must go the my project supervisor, Mr I. Economides, with whom I have discussed the different steps for the completion of this study.

I would also like to thank Mr A. Shiathas, geotechnical engineer of the GEOINVEST LTD, for his guidance and advise, especially concerning the information about Cyprus. Thanks are also expressed to the Land Survey Department and Mr A. Spyrou, site engineer of the Dhekelia Famagusta road.

Finally, I would like to thank all my lecturers of Civil Engineering Department, who though their lectures at the H.T.I., have helped me gain interest in Site Investigation, which resulted in this study.

#### SUMMARY

Site Investigation is an essential part of the civil engineering process and can be thought of as a process of discovery. The procedure followed is outlined in the following steps: boreholes are drilled to vast depths; samples are recorded (in situ tests are also performed); and laboratory tests are carried out on the obtained samples. Thus, a picture of the ground and its properties is build up. Using this picture, the engineer can meet the challenge of determining how structures will interact with the ground so that a practical, safe and economic design can be produced.

This project is mainly intended to analyse the objectives of Site Investigation and to discuss its importance, in conjunction with the main procedures, equipment and plant used in the Site Investigation of civil engineering works. A survey about procedures and extent of Site Investigation in Cyprus is also made.

Chapter One, introduces Site Investigation; its types and objectives. It also gives its relationship with Civil Engineering Construction.

Chapter Two, describes the formation of soils in a general manner. An understanding of the geology of the site is a fundamental requirement in the planning and interpretation of ground investigation.

Chapter Three, deals with the planning of Site Investigation. The stages followed are: desk study; reconnaissance; and detailed investigation.

Chapter Four, describes the methods and equipment of ground investigation in soils, rocks and water. A decription on the Geophysical methods used is also given.

Chapter Five, deals with the different kinds and procedures of in situ tests, as well as sampling. A description on the different kind of samplers used, as well as information on disturbed and undisturbed samples is also given.

Chapter Six, deals with laboratory testing. The different kinds of laboratory tests are outlined concerning the soil's classification, shear strength, consolidation, permeability, compaction and chemical composition.

Chapter Seven gives the importance of Site Investigation reports. The factual and the interpretive kinds of report are described.

Chapter Eight, describes the present day practise in Cyprus with reference to two projects (the Dhekelia Famagusta road and the Nice Day Tower).

Photographs, tables and graphs are used whenever possible, to give a clear explanation of plant and techniques in all aspects of this project. Four Appendices are provided for further reference.