HTI

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A HYDRAULIC PRESS

M/1019

THEOCHAROUS MENELAOS

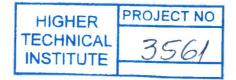
2004 - 2005

HIGHER TECHNICAL 1NSTITUTE PROJECT NO 1561

HTI

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT


DIPLOMA PROJECT

DESIGN OF A HYDRAULIC PRESS

M/1004

THEOCHAROUS MENELAOS

2004-2005

DESIGN OF A HYDRAULIC PRESS

BY

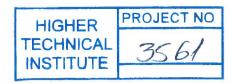
THEOCHAROUS MENELAOS

PROJECT REPORT SUBMITTED TO

THE DEPARTMENT OF MECHANICAL ENGINEERING

OF THE HIGHER TECHICAL INSTITUTE

NICOSIA-CYPRUS


IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DIPLOMA OF

TECHNICAL ENGINEERING

IN

MECHANICAL ENGINEERING

JUNE 2005

HIGHER TECHNICAL INSTITUTE NICOSIA-CYPRUS MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT 2004/2005

Project Number: M/1019

<u>Title:</u> "Design of a Hydraulic Press"

Objectives:

- 1. Carry out a survey on the design characteristics of existing hydraulic presses.
- 2. Design the press and use software to produce the assembly and test its functionality.
- 3. The press capacity will be 20KN.
- 4. Carry out stress analysis by considering different modes of failure on the different modules of the press.
- 5. Produce detailed drawings of the proposed designs.
- 6. Select the material and method of construction of the press.

Terms and Conditions:


Drawings must be constructed to ISO standards.

Student:

(3M)

Supervisor:

Dr. Lazaros Lazaris/Mr. P Demetriou

ABSTRACT

The goal of this project is to develop a design of a Hydraulic Press Bench, which is able to lift up a load of 20KN.

More detailed:

Chapter 1: Presents the aims and objectives of this project as well as the technique chosen for the development of the design.

Chapter 2: Presents the principle of the Hydraulic Press, also, discusses the advantages and applications of the Fluid Power, the functions and properties of the Hydraulic Fluid and the main components of the Hydraulic System.

Chapter 3: Describes working with deformed metal and types of available industrial Hydraulic Presses.

Chapter 4: Methodology adopted which includes procedure of executing the project and alternative solutions.

Chapter 5: Presents detailed 3-D drawings as well as 2-D drawings with all the dimensions of the different components. There is a detailed description for all the components which includes the use and where are connected.

Chapter 6: Displays the final complete design, all the stress analysis and the materials of the parts of the Bench Hydraulic Press.

Chapter 7: Conclusions and recommendations.

Chapter 8: Apprentices

The last page mentions the references.

CONTENTS	PAGE
ABSTRACT	ī
	_
CONTENTS	II
LIST OF FIGURES/DRAWINGS	V
LIST OF TABLES	VI
ACKNOWLEDGMENT	VII
CHAPTER 1	1
INTRODUCTION	1
1.1 AIMS AND OBJECTIVES	1
	_
CHAPTER 2	2
INNTRODUCTION TO THE RELATED THEORY	2
2.1 INTRODUCTION	
2.2 PRINCIPLE OF HYDRAULIC PRESS	2
2.3 WHAT IS FLUID POWER	3
2.3.1 ADVANTAGES OF A FLUID POWER	4
2.3.2 APPLICATIONS OF A FLUID POWER	4
2.4 FUNCTIONS OF HYDRAULIC FLUID	5
2.4.1 PROPERTIES OF A HYDRAULIC FLUID	6
2.4.2 PROPERTIES OF A HYDRAULIC OILS	6
2.5 MAIN COMPONENTS OF A HYDRAULIC SYSTEM	7
2.5.1 SUPPLY TANK	8
2.5.2 PUMP	10
2.5.3 PRESSURE RELIEF VALVE	10
2.5.4 ACTUATOR	10
2.5.5 PIPING	12
2.5.6 FILTERS	12

2.5.7	ACCUMULATOR	13
CHA	APTER 3	14
REL	ATED HISTORY OF WORKING WITH DEFORMED METAL	14
3.1	WORKING WITH DEFORMED METAL	14
3.2	TYPES OF AVAILABLE INDUSTRIAL HYDRAULIC PRESSES	16
CHA	APTER 4	20
MET	THODOLOGY ADOPTED	20
4.1	PROCEDURE OF EXECUTING THE PROJECT	20
4.2	ALTERNATIVE SOLUTIONS	20
CHA	APTER 5	22
DES	IGNS	22
5.1	FRAME	22
5.2	BASE	24
5.3	BARS	26
5.4	MOVING CONNECTION PIN	27
5.5	MIDDLE CONNECTION PIN	28
5.6	SMALL PIN	29
5.7	PISTON BASE	30
5.8	PISTON-BASE PIN	31
5.9	PISTON	32
5.10	MIDDLE FRAME PIN	33
5.11	CLAMP BASE	34
5.12	CLAMP	35
5.13	NUT AND BOLD	37
5.14	ASSEMBLY OF THE NUT, BOLT AND CLAMP	38
СНА	APTER 6	39

FINAL COMPLETE DESIGN SND STRESS ANALYSIS	3	9
6.1 FINAL COMPLETE DESIGN	3	9
6.2 STRESS ANALYSIS	4	0
6.2.1 DIRECT SHEAR	4	0
6.2.2 BENDING STRESS	4:	2
6.2.3 BEARING STRESS ON BRACKETS (HOLDING PINS)	4	3
6.2.4 DIRECT SHEAR OF THE CLAMPS	4	4
6.2.5 DIRECT SHEAR OF THE HYDRAULIC PISTON	4	6
CHAPTER 7	4	8
CONCLUSIONS & RECOMMENDATIONS	4	8
CHAPTER 8	4	9
APPENDICES	4	9
REFFERENCES	7	0