HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF AN APPLE

CIRVUE CONVERDE

Design by

XENOPHONTOS KYRIAKOS

M/565

JUNE 1991

DESIGN OF AN APPLE CRATE CONVEYOR SYSTEM

Project Report Submitted by

XENOPHONTOS KYRIACOS .

in part satisfaction of the award of Diploma of Technical engineer in Mechanical Engineering of Higher Techcinical Institute, Cyprus.

Project Supervisor: Mr N. Papanastasiou Lexturer in Mechanical Engineering, H.T.I.

Type of Project : Individual

Group

June 1991

Abstract

This project deals with the design of an apple crate coveyor which is in an inclination and it is 30 m long. Chapte 1 deals with the conveyor describing the use of it and its opperation. Chapter 2 deals with the design and the selection of the wire rope. Chapter 3 deals with the force analysis excerted on the crate in different cases. Chapter 4 deals with the selection of the crate. Chapter 5 deals with the Design of the railway. Chapter 6 deals with the Design of the columns. Chapter 7 deals with the Design of the Bolts and the welds. Chapter 8 deals with the power transmition and the selection of the motor and the gear reduser. Chapter 9 deals with the Bending moment and shear force analysis of the railway. Chapter 10 deals with the cost analysis of the system and the maintenance of it.

Chpater 11 covers the drawings related with the conveyor.

The appendices at the end include tables used for the design and selection procedures.

1

Contents

N. . .

.

		Pages
Abstract		1
1.	CHAPTER I	
1.1	General information about the conveyor	2
2.	CHAPTER II	
2.1	Terms and conditions for the design	3
2.2	Linear Velocity of the crate	3
2.3	Design of the wire Rope-Force Analysis	3
2.4	Selection of the wire rope	5
3.	CHAPTER III	
3.1	Force Analysis when the crate is moving	7
	downwards with full load	
3.2	The crate is moving downwards with full 🍼	8
	load and acceleration	
3.3	Force Analysis when the crate is moving	9
	downwards with out load	
3.4	The crate is moving downwards with out load	10
	and it accelerates	
4.	CHAPTER IV	
4.1	Selection of the crate	11
5.	CHAPTER V	
5.1	Design of the railway	12
5.2	Preliminary design	12
5.3	Design of the railway	13
5.4	Shear force diagrams	13
5.5	Bending moment diagrams	14
5.6	Design for bending	15
5.7	Design for shear	16
5.8	Combination of Bending and shear	17

б.	CHAPTER VI	Page
6.1	Design of columns	19
6.2	Diagrams	20
6.3	Bending moment diagram	20
6.4	Shear force diagram	21
6.5	Axial diagram	21
6.6	Factor of safety	22
7.	CHAPTER VII	
7.1	Design of Bolts	25
7.2	Testing the strenght of the hole of	26
	S.H.S.	
7.3	Design of welds	27
8.	CHAPTER VIII	
8.1	Power transmition	29
8.2	To find the torque of the pulley	30
a.	Angle of lap of small pulley	30
b.	Angle of lap of the big pulley	31
c.	Length of the belt	31
d.	Centrifucal force	32
8.3	Selection of the motor	34
8.4	Power transmited manually	34
9.	CHAPTER IX	
9.1	Bending moment and shear force Analysis	36
10.	CHAPTER X	
10.1	Cost Analysis	45
10.2	Maintenance sheet	47

11. CHAPTER XI

11.1 Drawings

APPENDICES