DEVELOPMENT OF A DC TO DC VOLTAGE CONVERTER

by

LINOS ERMOGENIDES

Project Report

Submitted to the Department of Electrical Engineering of the Higher Technical Institute Nicosia, Cyprus in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

June 1991

HIGHTS	1.21 1.14
RETITUTE	1815

ACKNOWLEDGMENTS

I would like to express my thanks to my project supervisor Mr A. Kaplanis for his guidance throughout the project.

I would also like to thank my training supervisors and friends Mr Panikkos Kattos and Mr Nicos Fontas Xenofontos for their valuable assistance and encouragement.

Finally thanks to everyone who helped me complete this project but especially thank you Andreas Sophocleous.

Linos Ermogenides JUNE 1991

ABSTRACT

This textbook deals with the design, construction and testing of a system capable of producing a high D.C voltage from a low volts supply.

The system is called a D.C to D.C voltage converter and given in input voltage not to exceed 10 volts D.C gives an output voltage equal to 150 volts D.C.

Chapter 1 deals with the description of the components used.

Chapter 2 deals with the explanation of the circuit diagram.

Chapter 3 deals with the selection of the components.

Chapter 4 deals with the testing and the results obtained.

CONTENTS

Acknowledgments

Abstract

Summary

Introduction

Chapter	1		BACKGROUND THEORY	Page
		1.1	555 Timer-Theory and Applications	1
		1.1.1	Introduction	1
		1.1.2	Mode of operation (astable action)	2
		1.1.3	Operation of the 555 as free running astable multivibrator	3
		1.2	Bipolar junction transistors	; 5
		1.2.1	Introduction	5
		1.2.2	Transistor as a switch	6
		1.2.3	Transistor specifications	7
		1.3	Heat sinks	8
		1.4	The 7812 Voltage regulator	10
Chapter	2		SYSTEM ANALYSIS	
		2.1	The block diagram	13
		2.2	The square wave generator	14
		2.3	The driving circuit	14
		2.4	Diode rectifier and capacito	or 15
		2.5	Output voltage regulator	15

3.1	Introduction	16
3.2	List of the components	16
3.3	Calculation of component values	17
3.4	The selected components	18

Chapter 4

TESTING AND RESULTS

4.1	Introduction		
4.2	Results of signal analysis	19	

Comments

Conclusions

Appendices