DESIGN OF THE HEATING AND WATER TREATMENT SYSTEM OF A SWIMMING POOL

by

Marios Evangelou

Project Report Submitted to the Department of Mechanical Engineering of the Higher Technical Institute Nicosia Cyprus in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1990

HICHER	PROJECT NO
TECHNICAL	INDE
INSTITUTE	1/05

SUMMARY

The project deals with the design of a heating and water treatment system for a swimming pool. Today, with the increasing demand for construction of public and private swimming pools, this study based on energy conservation and the weather conditions of Cyprus, gives the answers to many questions concerning the design engineer, the constructor and the owner of the pool.

First, the heating requirements for the pool are calculated and after analysis of the various heating systems, a selection is done. Then, recirculation is analysed and a recirculating system is selected. The water treatment is examined and a plant is selected.

After the above theoretical analysis equipment and pipe sizing is done and selection from manufacturer catalogues.

The final steps are cost analysis and maintenance. Cost analysis gives an estimation for the suggested design. Maintenance describes the maintenance of equipment and machinery for preventing breakdowns, and ensuring prober and efficient operation of the plant.

CONTENTS

ACKNOWLEDGMENTS

SUMMARY

INTRODUCTION

Page

CHAPTER 1 CALCULATION OF AREA AND VOLUME OF THE SWIMMING POOL

1.1	: Introduction1
1.2	: Area Calculations of the Swimming Pool 1
1.3	: Volume Calculations 5
1.4	: Results

CHAPTER 2

WATER HEATING REQUIREMENTS OF THE SWIMMING POOL

2.1	: Heat losses from a Swimming Pool11
2.1.1	: Evaporation Losses11
2.1.2	: Radiation Losses11
2.1.3	: Conduction Losses12
2.1.4	: Convection Losses12
2.2	: How to Decrease the Heat Load of the
	Swimming Pool13
2.3	: Heat Gain of Swimming Pool15
2.4	: Design Conditions for Heat Demand
	Calculations16
2.5	: Assumptions for the Calculation
	of Heat Demand16
2.6	: Calculation of Heating Requirements
	of the Swimming Pool17

2.6.1	: Calculation of Conduction Losses17
2.6.2	: Calculation of Convection Losses20
2.6.3	: Calculation of Radiation Losses23
2.6.4	: Calculation of Evaporation Losses24
2.6.5	: Calculation of Direct Heat Gain25
2.7	: Calculation of Maximum Heat Load26
CHAPTER 3	
DESCRIPTIO	ON OF SWIMMING POOL HEATING SYSTEMS
AND SELECT	TION OF THE SYSTEM TO BE EMPLOYED
	ξ.
3.1	: Swimming Pool Heating Systems28
3.2	: Description of Swimming Pool
	Heating Systems

	Heating Systems
3.2.1	: (a) Oil Fired Boiler28
	(b) Gas Fired Boiler29
3.2.2	: Heat Pump or "Reverse Refrigerator"30
3.2.3	: Active Solar Heating System33
3.2.4	: Passive Solar Heating
3.3	: Selection of the Heating System
	of the Swimming Pool
3.4	: Description of the Heating Circuit
	to be Employed

CHAPTER 4

DESCRIPTION OF SWIMMING POOL RECIRCULATION SYSTEMS AND SELECTION OF THE SYSTEM TO BE EMPLOYED

4.1	: Swimming Pool Recirculation Systems38
4.2	: Inlets and Outlets to the Pool39
4.3	: Treatment of Surface Pollution39
4.3.1	: Perimeter Gutters or
	Overflow Channels40
4.3.2	: Skimmer Weirs42
4.4	: Treatment of Deep End Pollution44
4.4.1	: Main Drain Outlets44
4.5	: Inlet to the Pool Arrangements44
4.5.1	: Wall Inlet Circulation Systems44
4.5.2	: Floor Inlet Circulation Systems46
4.6	: Selection of Recirculation System48

CHAPTER 5

DESCRIPTION OF SWIMMING POOL WATER TREATMENT SYSTEMS AND SELECTION OF THE SYSTEM TO BE EMPLOYED

and a

5.1	: Swimming Pool Purification Methods 49
5.2	: Disinfection
5.2.1	: Sodium and Calcium Hypochlorite51
5.2.2	: Chlorine Dioxide52
5.3	: The Chemistry of Chlorine in Water53
5.4	: PH Concentration55
5.5	: Description of the Chemical
	Dosing System56
5.6	: Filtration
5.7	: Filter Types58
5.8	: Filter Selection61

CHAPTER 6

EQUIPMENT AND PIPE SIZING

6.1	: Introduction63
6.2	: Turnover Period63
6.3	: Filtration Rate64
6.4	: Sizing of the Oil Fired Boiler64
6.5	: Sizing of Burner67
6.6	: Sizing of Heat Exchanger67
6.7	: Sizing of Fuel Oil Tank67
6.8	: Pipe Sizing of Heating Circuit68
6.9	: Pump Sizing of Boiler Heating
	Circuit
6.10	: Sizing of the Expansion Tank71
6.11	: Number of Inlets and Outlets to
	the Pool73
6.12	: Pipe Sizing of Pool Pipelines77
6.13	: Pump Sizing of Pool
	Recirculating System

CHAPTER 7

SELECTION OF EQUIPMENT AND ACCESSORIES

7.1	: Selection of Equipment and Accessories
	Involved in the Heating System82
7.2	: Selection of Equipment and Accessories
	Involved in the Filtration System83
7.3	: Selection of Equipment and Accessories
	Involved in the Disinfection-PH
	Correction Systems

CHAPTER 8

COST ANALYSIS

8.1	: Introduction8	9
8.2	: Cost Analysis of the pool Heating	
	and Water Treatment System9	0
8.3	: Running cost9	2
CHAPTER	Q	

PREVENTIVE MAINTENANCE SCHEME FOR THE EQUIPMENT

k

9.1	:	Introduction95
9.2	:	Boiler95
9.3	:	Burner96
9.4	:	Fuel Filter97
9.5	:	Bleeding of Fuel Pump97
9.6	:	Pumps
9.7	:	Pressure Sand Filter98
9.8	:	Skimmer Weirs99
9.9	:	Vacuum Points100

CONCLUSIONS

REFERENCES

APPENDICES

DRAWINGS