HIGHER TECHNICAL INSTITUTE

CIVIL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A SMALL SCALE SECONDARY WASTEWATER TREATMENT PLANT

C/831

BY

KYPRIANOU CHRISTOS

AND

DEMETRIADES TEMOTHERS

HIGHER TECHNICAL INSTITUTE

CIVIL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A SMALL SCALE SECONDARY WASTEWATER TREATMENT PLANT

BY

KYPRIANOU CHRISTOS

AND

DEMETRIADES TIMOTHEOS

JUNE 1998

HIGHER PROJECT NO. TECHNICAL 1881TUTE 2813

DESIGN OF A WASTEWATER TREATMENT PLANT

BY

CHRISTOS KYPRIANOU

AND

DEMETRIADES TIMOTHEOS

PROJECT REPORT
SUBMITTED TO

THE DEPARTMENT OF CIVIL ENGINEERING
OF THE HIGHER TECHNICAL INSTITUTE
NICOSIA, CYPRUS

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DIPLOMA OF

TECHNICIAN ENGINEER

IN

CIVIL ENGINEERING

JUNE 1998

PROJECT SUPERVISOR: MR N. KATHIDJIOTES LECTURER AT HTI

EXTERNAL ACCESSOR: MRS EVI THEOPEMPTOU

HIGHER TECHNICAL INSTITUTE NICOSIA - CYPRUS

CIVIL ENGINEERING DEPARTMENT

Academic Year 1997-98

Diploma Project Number: C/831

TITLE: Design of a wastewater treatment plant

Objectives:

- 1. To state wastewater qualities, treatment objective sand principles.
- To carry a planning study including an environmental impact study.
- 3. To design a small scale secondary treatment plant.

Terms and Conditions:

 Plant location and type of treatment will be assigned by project supervisor.

Students: Christos Kyprianou and Demetriades Timotheos

Supervisor: Mr N. Kathijotes

External Accessor: Mrs Evi Theopemptou

CONTENTS

		Pa	ge
ACKNOWLEDGEMEN'	TS		
CHAPTER 1: INTR	CODUCTION		
CHAPTER I. IIII	1.1	Wastewater	1
	1.2	Nature of wastewater	
	1.2.1	Physical contaminants	
	1.2.2	Chemical contaminants	
	1.2.3	Biological contaminants	
	1.3	Domestic wastewater	
CHAPTER 2: WAST	יבשאייבס כאאו	DACTEDISTICS	
CHAPIER 2. WASI		ical Characteristics of	
	_	ewater	Л
	2.1.1	Total Solids	
	2.1.2	Suspended Solids	
	2.1.3	Dissolved Solids	
	2.1.4	Colour	
	2.1.5	Turbidity	
	2.1.6	Temperature	
	2.1.7	Taste and Odour	
	2.1.7	raste and odour	O
	2.2 Chem	ical Characteristics of	
	Wast	ewater	7
	2.2.1	Alkalinity	8
	2.2.2	рн	8
	2.2.3	Biochemical Oxygen Demand	9
	2.2.4	Total organic carbon	9
	2.2.5	Chemical oxygen demand	9
	2.2.6	Theoretical Oxygen Demand	10
	2.2.7	Nutrients	10
	2.2.8	Organics	10
	2.2.9	Metals	11
	2.2.10	Hardness	11
	2.2.11	Fluoride	12

2.3	Biologica	l Characteristics	
	of Wastewa	ater	13
	2.3.1	Micro organisms	13
	2.3.2	Pathogens	13
	2.3.3	Protozoa	13
	2.3.4	Bacteria	14
	2.3.5	Viruses	14
	2.3.6	Helminths	14
CHAPTER 3: WAST	EWATER TREA	ATMENT PROCESSES	
	3.1 Coll	ection	16
	3.2 Pre-	treatment	18
	3.3. Prima	ary treatment	19
	3.3.1	Preliminary treatment	19
	3.3.2	Removal of suspended solids	20
	3.3.3	Removal of gritty matter	20
	3.3.4	Removal of grease and oil	21
	3.3.5	Chlorination	22
	3.3.6	Primary sedimentation	22
	3.4 Seco	ndary treatment	23
	3.4.1	Aerobic biological treatment	23
		a. Trickling filters	24
		b. Rotating biological filters	26
		c. Aerated lagoon	28
		d. Oxidation ponds	29
		e. Activated sludge	30
	3.5 Tert	iary Treatment	32
	3.5.1	Physical Processes	32
	3.5.2	Chemical Processes	33
	3.5.3	Biological processes	33
	3.5.4	Advanced Wastewater Treatment .	34

CHAPTER	4: ACTIVATED	SLUDGE TREATMENT
	4.1	Activated Sludge Characteristics 4
	4.2	Types of Sludge 4
	4.3	Sludge Treatment 5
	4.4	Sludge Disposal 5
CHAPTER		OCEDURES OF THE WASTEWATER TMENT PLANT
CHAPTER	6: ENVIRONMEN	NTAL CONSIDERATIONS
	6.1	Environmental Conditions 73
CHAPTER	7: LOCATION (OF THE WASTEWATER TREATMENT PLANT
	7.1	THE PROPOSED LOCATIONS FOR THE
		TREATMENT PLANT OF AGLANDJIA 7
CONCLUS	IONS	

REFERENCES

ACKNOWLEDGMENTS

The success of this project is due to the contribution of many people that we would like to thank.

We would like to thank and express our appreciation to Mr. N. Kathijotes, HTI Senior Lecturer, our project supervisor who had provided us with very helpful information and guidance through out the development of the project.

We would also like to give special thanks to Mrs Evi Theopemptou, Civil Engineer in the Sewerage board of Nicosia, who helped us to solve many problems that appeared during the designing of the project, and provided us with information related to future wastewater treatment plants of Aglandjia.

In addition we would like to thank Mr Mikis Chadjipanai, electrical engineer in the sewerage board of Nicosia, who is in charge of the Anthoupolis wastewater treatment plant and also Mr Costas Sophocleous, chemical engineer of the some treatment plant. They both provided us with useful information regarding the plant treatment processes.

The preparation of the manuscript could have not been done without the excellent job and the extreme patience of our friends Achilleas Georghiou and Christos Sevastides who did the typing.

Finally we would like to give thanks to our families for their patience and support during this difficult but beautiful period and every one else who supported us throughout the development of the project.