FEASIBILITY STUDY ON THE INTRODUCTION

OF ROBOTICS IN A METAL INDUSTRY

Project Report submitted by

ARTEMIS CHR. ARTEMIOU

In part satisfaction of the conditions for the Award of Diploma of Technician Enginner in Mechanical Engineering of the Higher Technical Institute, Cyprus.

Project supervisor: Marios Pattichis Lecturer in Mechanical Engineering, H.T.I.

Type of project: Individual

Project M/630.93

JUNE 1993

217

ABSIRACT

This project is concerned with the feasibility study of a flexible automation (robot system) established in Metalco industry for the production of solar water heaters.

The duty of the robot system is to perform welding and assembling by screwing. The welding is performed for the building of the tower, where the different parts of the solar water heater are placed, (cold water tanks, hot water storage tanks, absorber plate) and also for the welding the cold water tanks made by galvanized steel sheet (square edged configuration).

The assembling by screwing is made for the fixing the copper pipes with the clip-fins which are placed inside the absorber plate.

The project also deals with the introduction of the subject of Robotics as far technical aspects of Robotic systems, applicable to the metal industry. It carries out a feasibility study on one particular area of the Metalco industry, it includes technical details, it examines the economic impact during the operation of this system and further it is referred to its tangible and intangible benefits.

In Chapter 1, it describes the different parts involved for the operation of the robotic system.

The classification of the different robotic systems as for coordinate system, path control are described in Chapter 2.

In Chapter 3, a number of applications made by robots are described.

In Chapter 4, are explained operations made by robots, included in workcells or productive lines.

In Chapter 5, the situation in an industry is described for the installation of a robot system, its advantages and dissadvantages, and some reccommendations for the specific industry, for shortening the payback period.

In Chapter 6, a feasibility study is performed, and also a cost analysis is shown with theoretical costs.

AKNOWLEDGEMENTS

CONTENTS

ABSTRACT

INTRODUCTION

CHAPTER 1

1.1	THE BASIC SYSTEM	1
1.2	The Manipulator	1
1.3	End Effector	2
1.3.1	Standard Grippers	5
1.3.2	Vaccum Grippers	6
1.3.3	Air Pressur Grippers	6
1.3.4	Special Purpose Tools	7
1.4	Sensors	8
1.4.1	Contact Sensors	9
1.4.2	Non-contact Sensors	9
1.4.3	Process Sensors	9
1.5	Computer System	10
1.6	Teach Stations	12
1.7	Power Conversion Unit	12
1.8	Feeding Devices	13
1.9	Automatic Assembly	15

CHAPTER 2 Assessment of the second se

2.0	CLASSIFICATION OF INDUSTRIAL ROBOTS	18
2.1	First Generation Robots	18
2.1.1	Fixed Sequence Robots	18
2.1.2	Variable Sequence Robots	18
2.1.3	Numerical Control Robots	18
2.1.4	Playback Robots	19
2.2	CLASSIFICATION OF INDUSTRIAL ROBOTS	
	BY CONTROL METHOD	19
2.2.1	Point-to-point Path Control	20
2.2.2	Stop-to-Stop	20
2.2.3	-Continous path	21
2.2.4	Controlled path	22
2.3	CLASSIFICATION BY COORDINATE SYSTEM	22
2.3.1	Cylindrical coordinate configuration	n 22
2.3.2	Polar coordinate configuration	24
2.3.3	Jointed arm configuration	25
2.3.3.1	Pure Spherical	25
2.3.3.2	Parallelogram jointed	27
2.3.3.3	Jointed cylindrical	27
2.4	CARTESIAN COORDINATE SYSTEM	28
2.4.1	Cantilevered Cartesian	28
2.4.2	Gantry-style Cartesian	29
2.5	MECHANICAL SYSTEMS	31
2.5.1	Arm and body motions	32
2.5.2	Wrist motions	32
2.6	RELATION OF INDUSTRIAL ROBOT	
	WITH NUMERICAL CONTROL MACHINE	33

CHAPTER 3

3.1	APPLICATION AREAS FOR INDUSTRIAL ROBOTS	34	
3.1.1	Handling robots (material transfer)	35	
3.1.2	Welding		
3.1.2.1	Spot Welding		
3.1.2.2	Arc Welding		
3.1.3	Painting		
3.1.4	Assembly robots		
3.1.5	Processing operations		
3.1.6	Inspection	44	
3.1.7	Drilling		
3.1.8	Grinding	45	
3.1.9	Sealer	45	
3.1.10	Plasma Cutting	46	

CHAPTER 4

4.1	INDUSTRIAL ROBOTS AT WORK	48 8
4.1.1	Introduction	48
4.1.2	Robot as a cell controller	51
4.1.3	Robot as a peripheral device	52
4.1.4	Criteria for establishing a robot system	52
4.2	Handling robots (pick and place machines)	52
4.3	Assembly operations	55
4.4	General purpose robots	57
4.5	Typical forging installation	57
4.6	Spot welding	58
4.7	Arc welding	59
		1

CHAPTER 5

5.1	Robot applications in a particular firm	61
5.2	Characteristic of an industrial situation	÷ •
	which tend to make economical and practical	
	the robot installation	61
5.3	Ideal application	62
5.4	Advantages of the industrial robot	62
5.5	Dissadvantages of the industrial robot	63
5.6	Sociological consequence	05
5.7	Recomendations for shortening the	63
	payback period	00

CHAPTER 6

6.1	Feasibility study
6.1.2	Payback period
6.1.3	Market
6.1.4	Production Line
6.2	Cost Analysis (I)
	Cost Analysis (II)

CONCLUSIONS

REFERENCES

APPENDICES