DEVELOPMENT OF AN 8031 CONTROLLED ALPHANUMERIC DISPLAY

Project report submitted by

MOUSKOS CHARIS

to the

Electrical Engineering Department

of the

Higher Technical Institute

Nicosia, Cyprus

in partial fulfillment of the requirements

for the Diploma of

TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

JUNE 1994

ACKNOWLEDGMENTS

I would like to thank my supervisor Mr. Sotiris Hadjioannou for his patience throughout the completion of this project. I would like to express my thanks to my friends for the encouragement during the completion of the project. Finally, I would like to express my special thanks to my family for their support and encouragement.

DEVELOPMENT OF AN 8031 CONTROLLED ALPHANUMERIC DISPLAY

by MOUSKOS CHARIS

The purpose of the work is to design and construct an 8031 microcontroller, an alphanumeric display interface to the microcontroller and an appropriate program so as to create a moving massage on the display.

CONTENTS

	PAGE
ACKNOWLEDGMENTS	i
SUMMARY	ii
INTRODUCTION	iii
CHAPTER 1:BLOCK DIAGRAM	
1.1 The microprocessor	1
1.2 Demultiplexer	1
1.3 External memory (RAM, ROM)	1
1.4 Decoder output ports and display	1
1.5 Block diagram	1
	-
CHAPTER 2: THE INTEL 8031 MICROCONT	ROLLER
2.1 The 8031 Architecture	5
2.1.1 The 8031 oscillator and reset	6
2.1.2 Internal memory (RAM,ROM)	8
2.1.3 Input,Output pins, ports	11
2.1.4 Serial data communication	12
2.1.5 Interrupts	12
CHAPTER 3: DISPLAYS	
3.1 General	15
3.2 LED displays	15
3.2.1 Single LED display	15
3.2.2 Seven segment display	16
3.2.3 Alphanumeric displays	
3.2.4 Dot matrix displays	17
3.3 Liquid crystal displays (LCD's)	18
3.4 Video display units (VDU's)	19
3.5 Dot matrix LCD's	20

CHAPTER 4: DESIGN AND CIRCUIT DIAGRAM

4.1 Clock and reset	22
4.2 Low address - data demultiplexing	23
4.3 External memory	24
4.4 Display	25
4.5 Decoupling capacitance's	26
4.6 Complete circuit diagram	26
CHAPTER 5: TESTING AND CALIBRATION	
5.1 Free run testing	31
5.2 In circuit emulation (ICE)	31
5.3 Signature analysis	
5.4 Logic analysis	
5.5 Test of o/p ports and displays	33
CHAPTER 6: SOFTWARE	
6.1 I/O test program	35
6.2 Controlled display program	35
CHAPTER 7: CONCLUSIONS	37
REFERENCES	39
APPENDICES:	
Appendix a : PCBs	41
Appendix b: 8031 instruction set	42
Appendix c : Component data	43
Appendix d: Alphanumeric codes	44