HIGHER TECHNICAL INSTITUTE CIVIL ENGINEERING COURSE

MXINE

CONCRETE ADMIXTURES AND THEIR EFFECT ON CONCRETE PROPERTIES

MARIA ERMOGENOUS

JUNE 1999

2927

SUMMARY

This study examines the usefulness of admixtures and their influence on the fresh and hardened state characteristics of mortar and concrete.

It is mainly divided into two parts.

The first part deals with an extended literature survey on the chemical admixtures in concrete, including their chemical action with cement and their influence on concrete properties.

The second part of this study is an experimental program. The main parameters studied in this program are the workability of concrete, volume deformations and 28 day compressive strength. The criterion for comparison being the control mixes with no admixture mixed and cured under the same conditions exactly as the mix under test. The general conclusion arising from this study is that admixtures are useful materials, which give solutions to many problems arising in concrete production, as long as they are carefully and correctly used. Any material used must conform to the standards accepted in industry all over the world.

CONTENTS

	Page
ACKNOWLEDGEMENTS	Ι
SUMMARY	II
CONTENTS	III
LIST OF FIGURES	V
LIST OF PLATES	VI
LIST OF TABLES	VII
ş	
CHAPTER 1	
INTRODUCTION	
1.1 General	1
1.2 Concrete Generally	1
1.3 Admixtures Generally	4
CHAPTER 2	
LITERATURE SURVEY	
2.1 WATER-REDUCING ADMIXTURES	
2.1.1 General	6
2.1.2 Chemical Composition	8
2.1.3 Effect on the Properties of Concrete	10

2.2 RETARDERS

2.2.1 General	15
2.2.2 Uses of Retarders	16

2.3 AIR-ENTRAINING ADMIXTURES

2.3.1 General	18
2.3.2 The Chemistry of Air-Entraining Agents	18
2.3.3 Air-content and Characteristics	19
2.3.4 Interpretation as a Mechanism of Action	19
2.3.5 Effects on the Concrete Properties	20

Page

2.4 OTHER ADMIXTURES

2.4.1 Accelerators	26
2.4.2 Concrete Waterproofers	26
2.4.3 Disposal Agents	27
2.4.4 Concrete Coloring Agents	28
2.4.5 Concrete Hardeners	28
2.4.6 Bonding Agents	29

şⁱ

CHAPTER 3

EXPERIMENTAL WORK

3.1 Materials	30
3.2 Tests	30
3.2.1 Slump Test	30
3.2.2 Hardened State Test (Compressive Strength)	31
3.3 Experimental Results	34
3.3.1 Experiment No.1: Control Mix	34
3.3.2 Experiment No.2: Plasticizer	35
3.3.3 Experiment No.3: Superplasticizer	38
3.3.4 Experiment No.4: Retarder	41
3.3.5 Experiment No.5: Air-Entrainer	44

CHAPTER 4

GENERAL CONCLUSIONS	
4.1 Comments	47
4.2 Recommendations	49

REFERENCES	

50

LIST OF FIGURES

	Page
1.1 The relation of the compressive strength of concrete with	
water/cement ratio	7
2.1 The interaction between cement, air, water and molecules	
of air-entraining agent	24
2.2 Reduction water content related to air entrained and cement	
content	26
2.3 Expanding forces are created within the capillary structure	
during freezing	29
2.4 The minute air bubbles act as reservois for ice expansions	29
2.5 Hydrophobic tails of the agent prevent the filling of the air	
bubbles with water	29
2.6 Waterproofed concrete bricks inhibit almost no capillary rise	30

LIST OF PLATES

	Page
1.1 The lower the water/cement ratio, the denser is the interlinking	
of the crystals of the hydrated cement. Therefore the lower the	
w/c ratio, the stronger concrete mix	9
3.1 Compressive Machine	36
3.2 Cube Moulds	37
3.3 Vibrating Table	37
¢	