DESIGN, OPERATING CHARACTERISTICS AND

APPLICATIONS OF FLUID EJECTORS

Project Report submitted by

KOKKINOS CHRISTODOULOS

In part satisfaction of the conditions for the award of Diploma of Technician Engineer in Mechanical Engineering of the Higher Technical Institute, Cyprus.

Project Supervisor: Mr P. DEMETRIOU Lecturer in Mechanical Engineering, H.T.I

Type of project: Individual

JUNE 1990

PROJECT NO HIGHER TECHNICAL 1710

ABSTRACT

This project deals with the design, operating characteristics and applications of fluid ejectors.

The theory of fluid ejectors is developed. Tables and sample calculations are applied helping in the development of theory. Various types and their operating characteristics are described. Areas and possible areas of applications are discussed. Stress is also given to the efficiency, the advantages and the disadvantages of fluid ejectors over other devices, like vacuum pumps.

CONTENTS

<u>PAGE</u>

ACKNOWLEDGEMETNS

ABSTRACT

PART A	DEVELOPMENT OF THE THEORY
	OF FLUID EJECTORS

CHAPTER	1	
1.0	Introduction	
		1
CHAPTER	2	
2.0	Nozzles	
2.1	Introduction	3
2.2	Nozzle shape	3
2.3	Critical pressure ratio - Critical	4
2.4	temperature ratio - Critical velocity	6
2.4	Maximum mass flow or choked flow	13
2.5.1	Nozzles off the design pressure ratio	15
	Convergent nozzle	15
2.5.2	Convergent-divergent nozzle	16
2.6	Nozzle efficiency	18
2.7	The steam nozzle	
2.8	Approximations for the steam nozzle	21
2.9	Supersaturation	21
2.10	Total head or stagnation conditions	22
	of Stagnation conditions	26
CHAPTER 3		
3.0	Diffuser	_

3.1Diffuser theory3131

PART B ANALYSIS OF TYPES AND OPERATING CHARACTERISTICS OF FLUID EJECTORS

CHAPTER 4

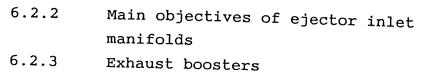
Ì

4.0	Analysis of types and operating	
	characteristics of fluid ejectors	35
		55

			PAGE
	4.1	Ejector main types	35
	4.1.1	Steam-Jet ejectors using steam as motive	00
		fluid and handling air	35
	4.1.1	A. Operation Analysis	35
	4.1.1	B. Discharge Pressure	38
	4.1.1	C. Changes in steam flow	.38
	4.1.1	D. Ejector ratings	39
	4.1.2	Steam-Jet ejectors using steam as motive	0,5
		fluid and handling liquid	44
	4.1.2	A. Operation Analysis and operating	
		characteristics of injectors	44
	4.1.2	B. Operation Analysis and operating	
	i	characteristics of siphons	48
	4.1.2	C. Standard siphons	49
	4.1.2	D. Annular siphons	50
	4.1.3	Liquid-Jet ejectors using a liquid as	
		motive fluid and handling liquid	51
	4.1.3	A. Theory and operating characteristics	
		of eductors	51
	4.1.3	B. General purpose eductors	57
	4.1.3	C. Streamlined eductors	58
4	4.1.3	D. Mixing eductors	59
4	4.1.3	E. Multinozzle eductors	61
4	4.1.3	F. Annular eductors	62
4	1.1.4	Air-Jet ejectors using air as motive fluid	
		and handling air	63
4	1.1.4	A. Operation analysis and operating	
		characteristics	63
4	1.2	Other types of fluid ejectors	67
4	.2.1	Air-Jet ejectors using air as motive	
		fluid and handling liquid	67
4	.2.1	A. Operating characteristics of air	
		siphons	67
4	.2.1	B. Operation analysis and operating	
		characteristics of air-lift eductors	68
4	.2.2	Ejectors as thermal compressors	69
4	.2.2	A. Operating characteristics	69

PART C DESCRIPTION OF AREAS OF APPLICATIONS OF FLUID EJECTORS

CHAPTER 5


5.0	Description of areas of applications	
	of fluid ejectors	72
5.1	Steam-Jet refrigeration	72
5.1.1	The motive steam nozzle	75
5.1.2	Ejector suction opening and suction	
	chamber	75
5.1.3	Mixing section	76
5.1.4	Constant area section	76
5.1.5	Subsonic diffuser	76
5.2	Steam power plants	76
5.2.1	The use of steam-jet ejectors in	70
	condensers	76
5.2.2	Combination of steam-jet ejector with	70
	an extraction pump	78
5.2.3	The use of steam-jet ejectors in boilers	78 79
5.3	Long-pipe heaters	
5.4	Medical applications - Anaesthetic	80
	equipment	
5.4.1	Ejector flowmeter	83
5.4.2	Injector suction units	83
5.5	Sewage applications	84
5.6	Priming applications	84
5.7	Carburettors	86
5.1	Carburectors	87

PART D

INVESTIGATION OF POSSIBLE AREAS OF APPLICATIONS

CHAPTER 6

6.0	Investigation of possible areas of	
	applications	90
6.1	Introduction	90
6.2	Car Engines	90
6.2.1	Ejector inlet manifolds	90

CONCLUSIONS REFERENCES APPENDICES

92 92

.95