DEVELOPMENT OF A FIELD STRENGTH METER

by

MOUYIS GIORGOS

Project Report
Submitted to
the Department of Electrical Engineering
of the Higher Technical Institute
Nicosia Cyprus
in partial fulfilment of the requirements
for the diploma of
TECHNICIAN ENGINEER

in

ELECTRICAL ENGINEERING

Project Supervisor : C. Theopemptou

Lecturer in Electrical Engineering

H.T.I.

Type of project : Individual

Project Number : E/738

JUNE 1991

SUMMARY

DEVELOPMENT OF A FIELD STRENGTH METER

This project as it will be seen is dealed with the design and Construction of a Field Strength Meter. The purpose of which is to measure the field strength or intensity of an electromagnetic signal. It has been designed primarily for Bands I to UHF. Generally speaking a Field Strength Meter is an extremely useful intrument. Any area or a specific location, not receiving an adequate signal can be detemined.

Because of the difficulty in having a complete circuit of such meter, having in mind that it should not be very sophisticated, for obvious reasons, such as time required to construct it, the procedure which was followed during all the time was a detail research of the problem. After that and having all the possible solutions in mind, I have tried to construct a field stength meter which would be used not only for field stength measurments but also to provide polar plot diagrams, with the aid of a computer, specifically programmed.

This Meter provides the user by means of calibration as well as the ability of listening at any time the station's sound signal. This is one of few possible techniques on determing the frequency of the transmitted signal.

Ending this brief statement it can be said that the development of a Field Strength Meter, was a unique chance for me to understand in a better way all those things, as far as Radio (and space) Communication is concerned.

MOUYIS GIORGOS

LIST OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF CONTENTS

GLOSSARY AND ABBREVIATIONS

SUMMARY

INTRODUCTION

PART 1 THEORY	Page
CHAPTER 1: ANTENNAS	
1.1. INTRODUCTION	1
1.2. ANTENNA FUNDAMETALS	1
1.2.1. RESONANSE IN LINEAR CIRCUITS	3
1.2.2. VELOCITY OF PROPAGATION	4
1.2.3. POLARIZATION	5
1.2.4. THE ISOTROPIC RADIATOR	6
1.2.5. RADIATION FROM DIPOLES	7
1.2.6. E AND H PLANE PATTERNS	11
1.3. PROPERTIES OF ANTENNAS	12
1.4. VHF - UHF ANTENNAS	14
CHAPTER 2: RADIO WAVE PROPAGATION	
2.1. INTRODUCTION	17
2.2. THE GROUND WAVE	17
2.2.1. THE SURFACE WAVE	18
2.2.2. THE SPACE WAVE	19

PART 2: DESIGN AND CONSTRUCTION

	Page
CHAPTER 1: INITIAL APPROACH TO THE PROJECT	
1.1. INTRODUCTION	25
1.2. MAIN PROBLEMS FACED AND	
FINAL ARRANGEMENT - CIRCUIT	25
CHAPTER 2: GENERAL DESCRIPTION OF	
THE BLOCK DIAGRAM AND CIRCUIT	
2.1. BLOCK DIAGRAM	28
2.2. CIRCUIT	28
CHAPTER 3: TUNERS	
3.1. INTRODUCTION - BASIC FUNCTION	30
3.2. TYPES OF TUNERS:	
MECHANICAL	31
ELECTRONIC	31
3.3. DIGITAL ADDRESS SYSTEMS:	
ELECTRONIC TUNING SYSTEMS	33
3.4. SELECTIVITY	35
CHAPTER 4: PICTURE IF AMPLIFIER AND DETECTOR	
4.1. PICTURE IF AMPLIFIER	36
4.1.1. INTRODUCTION - BASIC FUNCTION	36
4.1.2. GAIN CHARACTERISTICS	38
4.1.3. AUTOMATIC GAIN CONTROL - AGC	38
4.1.4. RESPONSE CHARACTERISTICS	39
4.2. VIDEO SIGNAL DEMODULATION	40
CHAPTER 5: SOUND	
5.1. INTRODUCTION	43
5.2. FREQUENCY MODULLATION	44
5.2.1. FREQUENCY AND MODULATION	45
5.3. FM DEMODIILATORS	45

5.3.1. RECEPTION OF FM SIGNALS	45
5.3.2. THE FM RECEIVER	46
5.3.3. DETECTORS	47
OTHER DETECTOR DESIGNS	50
THE PLL	51
PART 3: TEST/CALIBRATION/TROUBLESHOOTING	
CHAPTER 1: TEST	
1.1. TESTING POWER SYPPLY (1)	55
1.2. TESTING POWER SUPPLY (2)	56
1.3. TESTING THE TUNER/IF/AUDIO AMPLIFIERS	
AND DETECTORS	56
CHAPTER 2: CALIBRATING THE METER	
2.1. INTRODUCTION	58
2.2. CALIBRATION	58
CHAPTER 3: TROUBLESHOOTING	
3.1. GENERAL	60
CONCLUSION	
APPENTICES: A) CIRCUITS	
B) DATA/TABLES & OTHER USEFULL INFORMATI	ON
BIBLIOGRAPHY	