AN EXPERIMENTAL STUDY ON THE STRENGTH AND IMPACT RESISTANCE OF STEEL FIBRE REINFORCED CONCRETE

by : Anastasiou Stylianos Ioannou Androniki

Project Report submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia - Cyprus

in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

JUNE 1990

			a second for the second se	
H	CHER	E TRUE		1-25 F

ABSTRACT

This project deals with objectives related to the Strength and Impact resistance of Steel-Fibre-Reinforced Concrete.

It is generally recognised that short lengths of chopped steel wires uniformly distributed throughout a concrete or mortar matrix, result in a considerable improvement in performance.

Concrete so treated is called Steel-Fibre-Reinforced Concrete and some of its many advantages over ordinary concrete include:

> Flexural Strength Ductility Impact and Fracture Toughness Crack Control Resistance to Wear and Abrasion.

The main objectives of this project are the establishment of the effect of steel fibres on the flexural and shrinkage behaviour, impact resistance and compressive strength of Steel-Fibre-Reinforced Concrete.

Moreover a study of the main types and characteristics of fibres in general is carried out.

The whole project consists of four chapters. The first chapter deals with a historical background, the main types of fibres, their characteristics and their advantages over ordinary concrete. The second chapter refers to a past research on various characteristics of steel-fibrereinforced concrete.

Finally, the last two chapters deal with the experimental part, as well as with general conclusions, recommendations for future work and limitations of present work.

CONTENTS

Ρā	ıg	e
----	----	---

ACKNOWLEI	OGEMENTS	I
ABSTRACT		II
CONTENTS		III
CHAPTER	Vistoriaal background	4
1.1	Historical background	I
1.2	Types of libres used as Reinforcement	А
4 0 4	and their Applications	4
1.2.1	Asbestos fibres	4
1.2.2	Glass fibres	4
1.2.3	Natural Vegetable fibres	5
1.2.4	Polymer fibres	5
1.2.5	Steel fibres	6
1.3	Advantages of fibre-reinforced concrete	
	over ordinary concrete	7
1.3.1	Introduction	7
1.3.2	Reduction in concrete cracking as a	
	result of intrinsic stresses	8
1.3.3	Control of shrinkage movements	8
1.3.4	Ductility	8
1.3.5	Abrasion Resistance	9
1.3.6	Increase in the Impact Resistance	9
1.3.7	Increase in the flexural capacity	9
1.3.8	Durability	10
1.4	Factors against the use of fibre-	
	reinforced concrete	11
1.4.1	Introduction	11
1.4.2	Workability considerations	11
1.4.3	Cost considerations	11
1.5	Applications of fibre-reinforced-concrete	
	Economic and technical advantages	12
1.5.1	Introduction	12
1.5.2	Industrial floor slabs on ground	12
1.5.2.1	Economic advantages	12

1.5.2.2	Technical advantages	13
1.5.3	Concrete pavements	13
1.5.3.1	Economical advantages	13
1.5.3.2	Technical advantages	13
1.5.4	Shotcrete	13
1.5.4.1	Economical advantages	13
1.5.4.2	Technical advantages	14
1.5.5	Miscellaneous	14
1.5.5.1	Security	14
CHAPTER 2	: PAST RESEARCH ON VARIOUS CHARACTERISTIC	<u>S</u>
	OF STEEL FIBRE REINFORCED CONCRETE	
2.1	Introduction	15
2.2	Tensile strength	16
2.2.1	Influence of fibre content	16
2.2.2	Influence of the age of the specimens	16
2.3	Durability of steel-fibre-concrete	19
2.3.1	Introduction	19
2.3.2	Cracked beams / results	19
2.3.2.1	Loading tests after 34 days exposure	20
2.3.2.2	Loading tests after 325 days exposure	20
2.3.3	Uncracked cylinders / Results	22
2.4	Flexure	24
2.5	Toughness of Dramix steel fibre concrete	26
2.6	Influence of Fibres on Drying Shrinkage	28
2.7	Ductility of Wirand Concrete	28
2.8	Flexural and compressive strengths of	
	Wirand concrete	31
2.9	Durability of Wirand concrete	31
2.10	Flexural behaviour of fibre concrete with	
	conventional steel reinforcement	31
2.10.1	Test Results	34
2.10.1.1	Load at first crack	34
2.10.1.2	Deflection characteristics	34
2.10.1.3	Cracking characteristics	34
2.10.2	Conclusions	37

\$

CHAPTER 3	: THE EXPERIMENTAL PROGRAMME	
3.1	Preamble - Aim of Research Programme	38
3.2	Materials	40
3.2.1	Cement	40
3.2.2	Sand	40
3.2.3	Aggregates	40
3.2.4	Steel fibres	40
3.2.5	Admixture	40
3.2.6	Water	40
3.3	Determination of particles size	
	distribution by sieving	41
3.4	Mix design / Mix proportions	47
3.5	Specimens cast and tests performed	47
3.6	Procedure of mixing, compacting and	
	curing specimens in the laboratory	50
3.6.1	Mixing	50
3.6.2	Compaction	50
3.6.2.1	Introduction	50
3.6.2.2	External vibration of all the specimens	52
3.6.3	Curing of all the specimens	52
3.7	Measurement of workability of fibre-	
	reinforced concrete	54
3.7.1	"V-B" consistometer test	54
3.7.2	Comments on the results / "V-B" time	
	comparison	59
3.8	Compression tests	60
3.8.1	Determination of Crushing (or compressive)	
	strength	60
3.8.2	Results and Discussion	64
3.9	Flexural (central point load) tests	
	on slabs	67
3.9.1	Results and Discussion	67
3.10	Toughness	82
3.10.1	Results and Discussion	82
3.11	Impact Tests on Slabs	86

3.11.1	Results and Discussion	90
3.12	Shrinkage characteristics of steel-fibre-	
	reinforced concrete composites	96
3.12.1	Introduction	96
3.12.2	Drying Shrinkage tests	98
3.12.3	Results and Discussion	98
CHAPTER 4	: LIMITATIONS OF PRESENT WORK /	
	RECOMMENDATIONS FOR FUTURE WORK	
	AND GENERAL CONCLUSIONS	
4.1	Limitations of the Present work	104
4.2	Recommendations for future work	106
4.3	General Conclusions	108
4.3.1	Mix proportions	108
4.3.2	Workability	108
4.3.3	Shrinkage	108
4.3.4	Compressive strength	109
4.3.5	Ultimate load capacity	109
4.3.6	Toughness	110
4.3.7	Impact Strength	110