## HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

## DIPLOMA PROJECT

# DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

MJ787

YIALLOUROS CHRISTIS

1997

## **DESIGN OF AN AIR CONDITIONING**

## SYSTEM FOR A BUILDING

## BY

## **YIALLOUROS CHRISTIS**

#### **PROJECT REPORT**

#### SUBMITTED TO

#### THE DEPARTMENT OF MECHANICAL ENGINEERING

#### **OF THE HIGHER TECHNICAL INSTITUTE**

#### NICOSIA CYPRUS

#### IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

#### FOR THE DIPLOMA OF

## **TECHNICIAN ENGINEER**

## IN

## **MECHANICAL ENGINEERING**

## **JUNE 1997**



## ACKNOWLEDGMENTS

The completion of this project would have not been attained without the appreciable help of all the persons who contributed to it and whom I would like to thank.

First of all I would like to thank my project supervisor Mr T. Symeou, Lecturer at the Higher Technical Institute, for his valuable assistance and guidance in executing this project. Also I would like to express my appreciation for the information given by Mr Louis Vakanas, Mrs Anna-Maria and Mr Lakis Pipis. Finally I would like to thank Mrs Toulla Yiallourou for typing this project.

## **CONTENTS**

### **ACKNOWLEDGMENTS**

#### **SUMMARY**

## **INTRODUCTION**

## PART A

## CHAPTER 1: ESTIMATION AND CALCULATION OF "U" VALUES

### **PAGE**

| 1.1   | Estimation of "U" Value           | 4  |
|-------|-----------------------------------|----|
| 1.1.1 | Thermal Resistances of Materials  | 5  |
| 1.1.2 | Surface Resistances               | 6  |
| 1.1.3 | Thermal Resistances of Air Spaces | 6  |
| 12    | Calculation of U-Values           | 7  |
| 1.2.1 | External Wall                     | 7  |
| 1.2.2 | Partition Wall                    | 9  |
| 1.2.3 | Floor                             | 10 |
| 1.2.4 | Roof                              | 12 |
| 1.2.5 | Glass, Doors and Windows          | 13 |
| 1.2.6 | U-Value Summary                   | 15 |

### **CHAPTER 2: DESIGN CONDITIONS**

| 2.1 | Introduction                   | 18 |
|-----|--------------------------------|----|
| 2.2 | Selection of Design Conditions | 18 |

## CHAPTER 3: COOLING AND HEATING LOAD ESTIMATION

| 3.1           | Introduction                                                             | 22       |
|---------------|--------------------------------------------------------------------------|----------|
| 3.2           | Purpose of Load Calculations                                             | 22       |
| 3.3.<br>3.3.1 | Cooling and Dehumidification Load<br>Calculation<br>Load Classifications | 23<br>23 |
| 3.4<br>3.4.1  | Heat Gains<br>Internal Heat Gains                                        | 26<br>26 |
| 3.5<br>3.5.1  | Heating Load Calculation<br>Heating Load due to Ventilation and          | 28       |
|               | Infiltration                                                             | 29       |
| 3.6           | Load Calculations                                                        | 30       |
| 3.7           | Zone Input Sheet                                                         | 35       |

## PART B

## **CHAPTER 4: SYSTEM SELECTION**

| 4.1   | Air Conditioning Systems                                           | 40 |
|-------|--------------------------------------------------------------------|----|
| 4.1.1 | as to Equipment Arrangements                                       | 40 |
| 4.1.2 | Classification of Air Conditioning Systems<br>as to Major Function | 42 |
| 4.2   | System Selection                                                   | 42 |
| 4.3   | The System and the Reason for it's Selection                       | 43 |

## CHAPTER 5: PIPING AND DUCT SYSTEM

|                                         |                                                                                                 | PAGE                       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|
| 5.1                                     | Water Pipework                                                                                  | 48                         |
| 5.2                                     | Pipe Sizing                                                                                     | 50                         |
| 5.3                                     | Pipe Sizing Calculation                                                                         | 51                         |
| 5.4                                     | Tables of Results                                                                               | 53                         |
| 5.5<br>5.5.1<br>5.5.2<br>5.5.3<br>5.5.4 | Duct Sizing<br>Introduction<br>Velocity Method<br>Equal Friction Method<br>Static Regain Method | 57<br>57<br>58<br>58<br>58 |
| 5.6                                     | Supply Duct System                                                                              | 59                         |

## CHAPTER 6: SELECTION OF THE APPROPRIATE MACHINERY AND EQUIPMENT

1.

| 6.1                   | Selection of Appropriate Machinery                                        | 67             |
|-----------------------|---------------------------------------------------------------------------|----------------|
| 6.2                   | Introduction                                                              | 67             |
| 6.3<br>6.3.1<br>6.3.2 | Fan Coil Units<br>Fan Coil Units Selection<br>Fan Coil Unit's Duct Sizing | 67<br>69<br>72 |
| 6.4                   | (Air-to-Water Heat Pump) Water Chillers<br>Screw Type                     | 72             |
| 6.4.1<br>6.5          | Heat Pump Selection<br>Supply and Return Air Outlets                      | 72<br>73       |
| 6.5.1                 | Supply and Return (Exhaust) Air Outlets<br>Selection for Offices          | 73             |
| 6.6                   | Ventilation Fans for the Toilets                                          | 74             |

## **PAGE**

| 6.7   | Air Handling Unit               | 75 |
|-------|---------------------------------|----|
| 6.7.1 | Air Handling Unit Selection     | 75 |
| 6.7.2 | Fans for A.H.U                  | 77 |
| 6.7.3 | Selection of Fans               | 78 |
| 6.7.4 | Fan Selection for A.H.U         | 79 |
| 6.7.5 | Fan Selection for Exhaust Air   | 80 |
| 6.8   | Pump Selection                  | 81 |
| 6.9   | Expansion Tank                  | 84 |
| 6.9.1 | Selection of the Expansion Tank | 84 |
| 6.10  | Insulation                      | 85 |
| 6.11  | Anti-Vibration Mountings        | 86 |
| 6.12  | Fittings                        | 86 |
| 6.13  | Control of A.H.U                | 87 |

## PART C

## **CHAPTER 7: MAINTENANCE**

| 7.1  | Introduction                     | 92 |
|------|----------------------------------|----|
| 7.2  | Chiller (Air-to-Water Heat Pump) | 92 |
| 7.3  | Air Handling Unit                | 92 |
| 7.4  | Fans                             | 93 |
| 7.5  | Motors and Pulleys               | 93 |
| 7.6  | Pumps                            | 94 |
| 7.7. | Coils                            | 94 |

## **PAGE**

| 7.8  | Pipes          | 94 |
|------|----------------|----|
| 7.9  | Ducts          | 95 |
| 7.10 | Diffusers      | 95 |
| 7.11 | General        | 95 |
| 7.12 | Energy Savings | 96 |
|      |                |    |

## CHAPTER 8: COST ANALYSIS 99

## CONCLUSIONS

## REFERENCES

## **APPENDIX "A"**

## **APPENDIX "B"**

## SUMMARY

The purpose of this project is to design an air-conditioning system for a building.

The method of thermal load calculation was based on a computer program provided by "CARRIER".

Architectural drawings for the building were provided. Design conditions were supplied, while ambient conditions were based on data collected from the meteorological service.

Energy conservation and noise control were considered to be of major importance in the design of the system.

The project is divided into three parts.

The first part deals with the calculation of the thermal load of the building for heating and cooling. The procedure was based on a computer program provided by "CARRIER", which was based on the actual theory of heating and cooling loads estimation.

The second part deals with the system selection, with the selection of appropriate machinery as well as with equipment, duct and pipe sizing.

Finally the third part provides estimated cost analysis for the system employed and a preventive maintenance scheme for the major equipment used.

The system layout and its major components including piping, ducting and controls are presented on a complete set of detailed mechanical drawings.

The project is divided into 8 Chapters.

## **INTRODUCTION**

Full air conditioning implies the automatic control of an atmospheric environment either for the health and comfort of human beings or animals, or for the proper performance of some industrial or scientific process, irrespective of external climatic conditions.

The objective "Full" or "Complete" means that the temperature, relative humidity or moisture content, purity and movement of the air are controlled, within the limits imposed by the design specification.

The more civilized people become, the more sophisticated are the demands for a healthy and pleasant atmosphere. But nowadays the energy crisis requires the design engineer to consider the energy conservation as a vital factor.

One of the most effective ways of reducing overall energy consumption by using air conditioning systems, is to minimize the thermal transmittance coefficient of the enclosed structure (i.e. walls) by improved insulation and therefore the required capacity of the A/C system is reduced. Also the increased efficiency of systems and equipment as well as their carefully sizing and selection may contribute to less power consumption. The A/C system for Universal's offices in Nicosia requires a comfort and yearround type of air conditioning system. In the further stages the appropriate system is selected according to the thermal load demand of the building for heating and cooling.

The aim of the selected system is to satisfy the majority of the occupants providing a comfort environment by the help of automatic controls in each conditioned space. These shall occur trying to achieve the best performance and economics of the whole air conditioning system.