HIGHER TECH MICAL INSTITUTE ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

PROTECTION OF ELECTRICAL EQUIPMENT

by ZANDIS KYPROS

E 1103

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

PROTECTION OF ELECTRICAL EQUIPMENT IN EAC SYSTEM

E/1106

ZANDIS KYPROS

JUNE 1997

PROJECT NO HEHER HNICAL TITUTE

na ser e companya. Na ser e companya

To my family and friends

High - Carley of Longerson, ma-

Anna Ingili 11, a William Ingili 12, anna 18 Anna 1860 - Talaithe an an

PROTECTION OF ELECTRICAL EQUIPMENT IN EAC SYSTEM

Project report submitted by:

ZANDIS KYPROS

In part satisfaction of the award of Diploma of Technical Engineer in Electrical Engineering of the

Higher Technical Institute, Cyprus

Project Supervisor: Mr. Ch. Chrysafiades Senior Lecturer HTI

External Supervisor: Dr. V. Efthymiou Senior Electrical Engineer EAC

June 1997

Acknowledgements

Abstract

Introduction

Chapter 1	PRESENDATION OF THE EAC'S GENERATION	3
·	TRANSMISSION AND DISTRIBUTION	í -
	NETWORKS	
	1.1 Electricity in Cyprus	4
	1.2 The generation system of EAC. Future plans	4
	Transmission system	7
	Distribution system	8
Chapter 2	PROTECTION ON EAC'S ELECTRICAL POWER	ł
-	SYSTEM	
	2.1 EAC's Electrical Power System	9
	2.2 The need for Protection	12
	2.3 Protection of EAC's Electrical Power system	14
	2.4 Purpose of protection	16
	2.5 Basic elements of protection	17
	2.6 Basic principles and aspects of the protection	
	system	18
	2.7 Functional characteristics of protection	19

CONTENTS

1

Chapter 3

EAC PROTECTION POLICY ON DISTRIBUTION NETWORK

3.1	Overcurrent protection	21
3.2	Characteristics of overcurrent relays	21
3.3	Classification of overcurrent protection	24
3.4	Necessary elements for the selection of the	26
	types of relays and their settings	
3.5	Overcurrent relays	28
3.6	Earthful protection	29
3.7	Earthful relays	30

EAC PROTECTION POLICY ON TRANSIMISSION

Chapter 4

NETWORK			
4.1 Overhead lines - 66KV	31		
4.2 66 KV Underground cables			
4.3 132 KV Overhead lines	31		
4.4 Underground cables - 132KV	32		
4.5 Main protection relays	33		
4.6 Zones of protection			
4.7 Distance relay schemes using communication			
channel	35		
4.8 Differential protection relays			
4.9 Autoreclosers			
4.10 Autoreclosers in EAC network	44		
4.11 Selection of autorecloser's installation			
position	46		
4.12 Breaker failure protection			
4.13 Bus-bar protection			

Chapter 5

RELAY SETTING CALCULATIONS TYPICAL EXAMPLE

5.1	Protection objectives	48
5.2	11KV System Protection co-operation	48
5.2.1	Time Multiplier and Plug Setting	48
5.2.2	Necessary information for relay co	
	-ordination	49
5.2.3	Procedure	49
5.3	132 S/S three phase-fault/phase earthfaults	51
5.3.1	Feeder No.1	51
5.3.2a	Feeder No:2 -1-	57
5.3.2b	Feeder No.2 -2-	62
5.3.3	Feeder No.3	67
5.3.4	Feeder No.4	72
5.4	Bus sections	79
5.5	Incomers 1 & 2	82
	Tables for relay settings	
	Typical example	

Chapter 6

CONCLUSIONS

6.1	Increased reliability	85
6.2	Recommendations	85

Appendices

ACKNOWLEDGEMENTS

I would like to express my deep thanks and gratitude to my project supervisor Mr. Ch. Chrysaphiades for his valuable help and guidance throughout the project period. My special thanks and appreciation to my external supervisor Mr. Venizelos Efthymiou for his guidance and supervisor and for sparing a lot of his valuable time to assist me in completing this task.

Also I would like to thank all the staff of the Electricity Authority of Cyprus for their guidance and co-operation during the project period.

Kandis

ABSTRACT

PROTECTION OF ELECTRICAL EQUIPMENT IN EAC SYSTEM

This project deals with the protection of the transmission and Distribution System of the Electricity Authority of Cyprus. The system has to be protected from internal and external disturbances so as to minimise the damages to equipment and to save the public from exposed high voltages.

The project studies EAC's policy on protection and schemes are adopted followed by a design example on the protection of a typical transmission/distribution substation.

Re Villemado El belo

INTRODUCTION

Electricity has become, during the last few decades, one of the most important and vital forms of energy. It is extensively used in offering lighting energy, heating energy, energy for electrical machines, and even entertainment through television or their means of massive or individual entertainment. The use of electricity is in fact much more necessary. Today, the technological progress is developing so rapidly, that the need for electricity is becoming more and more vital for society. The increase of population and as a result the building up of more resident units, the erection of many industrial zones with most of them having machines consuming large amounts of current and many other factors classifies electricity as one of the most important sources of energy world-wide. It can undoubtedly be said that humanity is so dependent on electricity and its uses, that today life cannot be imagined without it.

That's the reason, why an electrical system of generation, transmission and distribution must be designed in such a way that optimum conditions of supply will exist at all times, no matter what. When a fault occurs at any part of the network, protection devices must be energised so, to isolate the fault at the achieved minimum area while the supply should not be interrupted at any other part of the network than in the faulty one. Furthermore, the part of the circuit that was affected by the fault, should not be hardly damaged and then destroyed and become unusable, but on the other hand it should become reeffective after normal conditions are restored.

In order to achieve this purpose, protective devices called circuit breakers are needed to be placed at various key points of the system which will isolate the faulty part when a signal is received from the protective relays which are the responsible devices to detect the fault current.

1

The protective relays should be so adjusted, so as to minimise the fault in such a way than no permanent damage is done in the circuit due to excessive current that the cables will not be able to withstand.

> PRELIDE PROPOSION PRODUCTS (PROPOSION) TRANSMICTORY (PROPOSION) PROPOSION (PROPOSION) PROPOSION (PROPOSION) AND AVER TO PROPOSION (PROPOSION) (PROPOSION (PROPOSION) PROPOSION (PROPOSION) PROPOSION (PROPOSION) (PROPOSION (PROPOSION) PROPOSION (PROPOSION) (PROPOSION (PROPOSION) PROPOSION (PROPOSION) (PROPOSION (PROPOSION (PROPOSION (PROPOSION) PROPOSION (PROPOSION) (PROPOSION (PROPOSION

,

2