DEVELOPMENT OF A MICROPROCESSOR IN-CIRCUIT EMULATOR

Project Report

Submitted by KYRIAKIDES ANTONIS

to the

Department of ELECTRICAL ENGINEERING

of the

HIGHER TECHNICAL INSTITUTE NICOSIA CYPRUS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DIPLOMA

OF

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

JUNE 1991

1819

INTRODUCTION

Anyone who designs microprocessor-based systems needs some kind of software-development method to make the hardware do its intended task.Basic requirements are an editor to construct the source code, an assembler to convert this into the microprocessor's native machine code and a means of testing and debugging this code on the target system-an eprom, an eprom emulator or an in-circuit emulator (ICE). In this project a small in-circuit emulator was

constructed.

The emulator is connected through an 8255 PPI to the AMSTRAD CPC464 personal computer.

The idea was to construct a stand alone troubleshooting system rather than a system which required a PC and an RS232 to work. The disadvantage of the PC is that first it requires the appropriate software which might not work with every PC and second it is more convenient to carry the ICE to the faulty computer than the opposite.

Although the AMSTRAD computer is a bulky system to carry around, a small and cheap Z80 based microprocessor can be built having an LCD display and a keyboard connected to the emulator through the 8255 peripheral, can do the job perfectly.

INTRODUCTION 1			
CHAPTER 1 WHAT IS IN-CIRCUIT EMULATION			
1.1 The In-Circuit Emulator	3		
1.2 Features of commercial In-circuit Emulators	8		
1.3 Debugging Tools	9		
CHAPTER 2 VARIOUS METHODS OF MICROPROCESSOR FAULT			
FINDING TECHNIQUES			
2.1 Logic Analyzer	12		
2.2 Signuture Analyzer	14		
2.3 Self-Test Programs (Diagnostic Software)	15		
CHAPTER 3 CONSTRUCTION OF AN I.C.E.S			
3.1 Description of the Constructed Emulator	18		
3.1.1 How the addressing of memory and I/O			
works	18		
3.1.2 Bit Assignment - Status Lines	22		
3.1.3 Bit Assignment - Control Lines	23		
3.1.4 Forcing and Interrupt Lines	24		
3.1.5 How the Status line are controled	25		
3.1.6 Testing and Troobleshooting of the ICE	26		
CHAPTER 4 THE INTERFACE CARD			
4.1 Description of the Interface Card	31		
4.1.1 The 8255 Programmable Peripheral			
Interface	33		
4.1.2 Control Logic	35		
4.1.3 Interfacing the 8255 with the AMSTRAD .	36		
4.1.4 Description of Circuit	37		
4.1.5 Specifying the Control Word	38		
CHAPTER 5 THE Z80A MICROPROCESSOR			
5.1 The Z80A Processor	43		

CONCLUSIONS		
REFERENCES		
APPENDIX	A	BLOCK DIAGRAM OF THE CONSTRUCED
	EMULA	TOR
APPENDIX	В	SPECIFICATION OF CONSTRUCTED UNIT
APPENDIX	С	I.C.E OPERATING SYSTEM
APPENDIX	D	280A CPU TECHNICAL SPECIFICATIONS
APPENDIX	Е	BLOCK DIAGRAM OF THE FLUKE 9010A
	EMULA	ATOR
APPENDIX	F	MANUFUCTURERS' SPECIFICATION
	SHEET	2S