HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

PIC DEVELOPMENT PACKAGE

E.1275

MICHAELIDES K. MICHALIS

JUNE 2001

Introduction

The purpose of this project is to study the needs of the development process of a PIC microcontroller based project and provide the necessary tools for the whole development process.

PIC microcontrollers, manufactured by Microchip, offer many advantages like their very low cost, the minimum number of components required to operate, their speed and many other on-chip features which makes them superior to other microcontrollers in their category. These microcontrollers exist in such a great variety that there is a microcontroller for every need in the development of a application.

For this project the use of the mid-range family (16XXX) was selected because of it's low price compared to the features offered. General features of this family of microcontrollers are the 14-bit wide instructions. The instruction set it's self is highly integrated and only 35 instructions must be learned, they can achieve high speeds of up to 5 MIPS at 20MHz. Also RAM memory is available, programmable interrupts, low power consumption and wide operating voltage. Several other features specific to each device allow these microcontrollers to be used for communication satelite applications, military applications and even for internet connectivity.

The programmer constructed is able to program all the Flash microcontrollers available in the 16XXX family produced up to date by Microchip. A Windows 95/98 interfaced program for the programmer was created which allows to read/write all memory locations of the microcontrollers and assemble/disassemble MPASM. Also the programmer is able to program the PICs while in circuit (In circuit Serial Programming TM) and/or using low voltage (Low Voltage Programming TM).

A development board is also constructed that can be used to teach how to use the PICs and furthermore projects can be developed and tested before the actual construction begins.

Finaly for aplication purposes a digital oscilloscope was constructed, utilising the development presented here, as featured in the October 2000 issue of Everyday Practical Electronics magazine. This is a dual channel oscilloscope and it can handle frequencies extending well above 10kHz and of up to 50V peak to peak of input.

Table of Contents

Description	Page
Introduction	1
Chapter 1 : Microchip Products	
1.1 PIC Families From Microchip	3
1.2 Family Selection For The Project	5
Chapter 2: Flash PIC16CXXX Device Overview	
2.1 Device Identification	7
2.2 Device Structure	7
2.2.1 The Core	8
2.2.2 Peripherals	8
2.2.3 Special Features	9
Chapter 3 : Development Process	10
3.1 Selecting The Correct PIC	
3.2 Tools Used For Development	
3.2.1 Microcontroller Datasheets	13
3.2.1.1 Mid-Range MCU Family Reference Manual	13
3.2.1.2 PIC Datasheets	13
3.2.1.3 Errata Documents	13
3.2.1.4 Application Notes	14
3.2.1.5 Programming Specifications	14
3.2.2 Microchip MPLAB	14
3.2.3 PIC Programmer	15
3.2.4 Development/Test Bed	16
Chapter 4: Programming Specifications	
4.1 Programming The PICs	18
4.2 Program/Verify Mode	19
4.3 Serial Program/Verify Operation	19
4.4 Programming Commands	21

Description		Page
	4.4.1 Load Configuration Command	22
	4.4.2 Load Data For Program Memory Command	22
	4.4.3 Load Data For Data Memory Command	22
	4.4.4 Read Data From Program Memory Command	22
	4.4.5 Read Data From Data Memory Command	23
	4.4.6 Increment Address Command	23
	4.4.7 Begin Erase/Program Cycle Command	23
	4.4.8 Begin Programming Only Cycle Command	23 [*]
	4.4.9 End Programming Command	24
	4.4.10 Erase Commands	24
4.5 Programming Algorithm		24
4.6 PIC Memory Locations		24
	4.6.1 User Program Memory	24
	4.6.2 Data EEPROM Memory	25
	4.6.3 ID Locations	25
	4.6.4 Configuration Word	26
	4.6.5 Device ID Word	26
Chapter 5 : PIC Programmer		28
5.1 H	5.1 Hardware	
	5.1.1 Programmer Specifications	29
	5.1.2 Programmer Concept	30
	5.1.3 Circuit Description/Operation	31
5.2 Software		34
	5.2.1 Programmer Specifications	34
	5.2.2 Program Flowchart	34
	5.2.3 Manual Of Operation	36
	5.2.3.1 Installation	36
	5.2.3.2 Using The Programmer	36

Description	<u>Page</u>
5.2.3.2.1 Main Window	37
5.2.3.2.2 Programmer Menus	41
Chapter 6 : Development Board	43
6.1 Development Board Characteristics	44
6.1.1 Oscillator Options	44
6.2 Development Board Circuit	45
6.3 How To Use The Development Board	46
Chapter 7 : PIC Virtual Oscilloscope	49
7.1 Virtual Oscilloscope Features	50
7.2 Development Process	50
7.2.1 Selecting The Correct PIC	51
7.2,2 Circuit Development	52
7.3 Circuit Diagram	53
7.3.1 Circuit Description	53
7.4 Construction	55
7.5 Program Operation	57
7.6 PIC Virtual Oscilloscope Software	57
7.7 Comments	62
Conclusions	63
Appendix A: CD Guide	64
Appendix B: Data File Format	68
Appendix C: PCBs and List of Components	71
Appendix D: Troubleshooting Guide	82